Using Deep Learning Neural Networks to Predict Violent vs. Nonviolent Extremist Behaviors

Recent analyses of radicalization processes have shown that extremist attitudes and violent behavior may be related in some cases, but are rarely collinear. It therefore benefits analysts of political violence to leverage tools that assist in the distinction of characteristics that might move an ind...

Full description

Saved in:  
Bibliographic Details
Main Author: Braddock, Kurt 1981- (Author)
Format: Electronic Article
Language:English
Published: 2025
In: Terrorism and political violence
Year: 2025, Volume: 37, Issue: 6, Pages: 834-856
Online Access: Volltext (lizenzpflichtig)
Journals Online & Print:
Drawer...
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000naa a22000002c 4500
001 1933281960
003 DE-627
005 20250815090720.0
007 cr uuu---uuuuu
008 250815s2025 xx |||||o 00| ||eng c
024 7 |a 10.1080/09546553.2024.2376639  |2 doi 
035 |a (DE-627)1933281960 
035 |a (DE-599)KXP1933281960 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Braddock, Kurt  |d 1981-  |e VerfasserIn  |0 (DE-588)1209148005  |0 (DE-627)1696301858  |4 aut 
109 |a Braddock, Kurt 1981- 
245 1 0 |a Using Deep Learning Neural Networks to Predict Violent vs. Nonviolent Extremist Behaviors 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Recent analyses of radicalization processes have shown that extremist attitudes and violent behavior may be related in some cases, but are rarely collinear. It therefore benefits analysts of political violence to leverage tools that assist in the distinction of characteristics that might move an individual towards violence (vs. nonviolence) in support of their beliefs. To this end, the current study explores the efficacy of deep learning neural networks for classifying extremists as potentially violent or nonviolent based on dozens of common predictors derived from various perspectives on radicalization. Specifically, this study uses 337 predictors from the Profiles of Individual Radicalization in the U.S. dataset to populate a neural network with two hidden layers composed of four processing nodes. The model correctly predicted whether an individual engaged in violence (or not) in 94.2 percent of cases, on average. Analyses further identified several predictors that were most important in classifying violent and nonviolent cases. These analyses demonstrate neural networks may be effective tools in the study of radicalization and extremism, particularly regarding the disaggregation of salient outcomes. 
650 4 |a Radicalization 
650 4 |a Terrorism 
650 4 |a Violent Extremism 
650 4 |a deep learning 
650 4 |a Machine Learning 
650 4 |a Neural networks 
773 0 8 |i Enthalten in  |t Terrorism and political violence  |d London : Cass, 1989  |g 37(2025), 6, Seite 834-856  |h Online-Ressource  |w (DE-627)349234795  |w (DE-600)2080322-9  |w (DE-576)113563507  |x 1556-1836  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:6  |g pages:834-856 
856 4 0 |u https://doi.org/10.1080/09546553.2024.2376639  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
912 |a NOMM 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4757411030 
LOK |0 003 DE-627 
LOK |0 004 1933281960 
LOK |0 005 20250815043607 
LOK |0 008 250815||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2025-08-14#77557BB4FAEE21C09AA8E56DC16CB7DCB0E6B42D 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a WA-MARC-krimdoka001.raw