Forecasting identity theft victims: analyzing characteristics and preventive actions through machine learning approaches

Researchers in criminology and criminal justice have been making increasing use of the machine learning approach to investigate questions involving large amounts of digital data. We make use here of survey data on over 220,000 respondents drawn from three waves of the National Crime Victimization Su...

Full description

Saved in:  
Bibliographic Details
Authors: Hu, Xiaochen (Author) ; Zhang, Xudong (Author) ; Lovrich, Nicholas P. (Author)
Format: Print Article
Language:English
Published: 2023
In: The new technology of financial crime
Year: 2023, Pages: 183-212
Check availability: HBZ Gateway

MARC

LEADER 00000naa a2200000 c 4500
001 1925325369
003 DE-627
005 20250512113343.0
007 tu
008 250512s2023 xx ||||| 00| ||eng c
020 |a 9781032192031 
035 |a (DE-627)1925325369 
035 |a (DE-599)KXP1925325369 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Hu, Xiaochen  |e VerfasserIn  |0 (DE-588)1220514497  |0 (DE-627)1737447096  |4 aut 
109 |a Hu, Xiaochen 
245 1 0 |a Forecasting identity theft victims: analyzing characteristics and preventive actions through machine learning approaches  |c Xiaochen Hu, Xudong Zhang, and Nicholas P. Lovrich 
264 1 |c 2023 
300 |b Illustrationen 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Literaturverzeichnis: Seite 209-212 
500 |a Originally published in: Victim & Offenders, volume 16, issue 4 (2021), pp. 465-494 
520 |a Researchers in criminology and criminal justice have been making increasing use of the machine learning approach to investigate questions involving large amounts of digital data. We make use here of survey data on over 220,000 respondents drawn from three waves of the National Crime Victimization Survey Identity Theft Supplement (NCVS-ITS) conducted by the Bureau of Justice Statistics (BJS) in 2012, 2014, and in 2016. We use three distinct machine learning algorithms to analyze these data: 1) logistic regression; 2) decision tree; and, 3) random forest. We assess the efficacy of these approaches against these evaluative criteria: the overall percentage of correct classification, receiver operating characteristics (ROC), the area under the ROC curve (AUC), and feature criticality. Our findings indicate that the logistic regression algorithm performs best in predicting overall identity theft victimization, misuse of credit cards, misuse of financial accounts of other types, and the opening of new accounts; the random forest algorithm performs best in predicting misuse of checking/saving accounts. Our findings suggest that the respondent’s age, educational level, and online shopping frequency are significantly related to identity theft victimization. Additionally, frequently checking credit reports and changing passwords of financial accounts are strong predictors of identity theft victimization. We draw out the implications of our work for our collective understanding of identity theft, and for informing our judgment as to the potential utility of the use of machine learning approaches in criminology and criminal justice. 
700 1 |a Zhang, Xudong  |e VerfasserIn  |4 aut 
700 1 |a Lovrich, Nicholas P.  |e VerfasserIn  |0 (DE-588)170318281  |0 (DE-627)060390328  |0 (DE-576)131215183  |4 aut 
773 0 8 |i Enthalten in  |t The new technology of financial crime  |d London : Routledge, 2023  |g (2023), Seite 183-212  |h x, 242 Seiten  |w (DE-627)1811285341  |z 9781032192024  |z 9781032192031  |7 nnam 
773 1 8 |g year:2023  |g pages:183-212 
951 |a AR 
ELC |b 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4723532137 
LOK |0 003 DE-627 
LOK |0 004 1925325369 
LOK |0 005 20250512112552 
LOK |0 008 250512||||||||||||||||ger||||||| 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
ORI |a WA-MARC-krimdoka001.raw