Recruitment into Organized Crime: An Agent-Based Approach Testing the Impact of Different Policies
Objectives We test the effects of four policy scenarios on recruitment into organized crime. The policy scenarios target (i) organized crime leaders and (ii) facilitators for imprisonment, (iii) provide educational and welfare support to children and their mothers while separating them from organize...
1. VerfasserIn: | |
---|---|
Beteiligte: | ; ; ; |
Medienart: | Elektronisch Aufsatz |
Sprache: | Englisch |
Veröffentlicht: |
2022
|
In: |
Journal of quantitative criminology
Jahr: 2022, Band: 38, Heft: 1, Seiten: 197-237 |
Online-Zugang: |
Volltext (kostenfrei) Volltext (kostenfrei) |
Journals Online & Print: | |
Verfügbarkeit prüfen: | HBZ Gateway |
Schlagwörter: |
MARC
LEADER | 00000caa a22000002c 4500 | ||
---|---|---|---|
001 | 1884548784 | ||
003 | DE-627 | ||
005 | 20250116012322.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240328s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10940-020-09489-z |2 doi | |
035 | |a (DE-627)1884548784 | ||
035 | |a (DE-599)KXP1884548784 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a 2,1 |2 ssgn | ||
100 | 1 | |a Calderoni, Francesco |e VerfasserIn |0 (DE-588)121994744X |0 (DE-627)1736063103 |4 aut | |
109 | |a Calderoni, Francesco | ||
245 | 1 | 0 | |a Recruitment into Organized Crime: An Agent-Based Approach Testing the Impact of Different Policies |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Objectives We test the effects of four policy scenarios on recruitment into organized crime. The policy scenarios target (i) organized crime leaders and (ii) facilitators for imprisonment, (iii) provide educational and welfare support to children and their mothers while separating them from organized-crime fathers, and (iv) increase educational and social support to at-risk schoolchildren. Methods We developed a novel agent-based model drawing on theories of peer effects (differential association, social learning), social embeddedness of organized crime, and the general theory of crime. Agents are simultaneously embedded in multiple social networks (household, kinship, school, work, friends, and co-offending) and possess heterogeneous individual attributes. Relational and individual attributes determine the probability of offending. Co-offending with organized crime members determines recruitment into the criminal group. All the main parameters are calibrated on data from Palermo or Sicily (Italy). We test the effect of the four policy scenarios against a baseline no-intervention scenario on the number of newly recruited and total organized crime members using Generalized Estimating Equations models. Results The simulations generate realistic outcomes, with relatively stable organized crime membership and crime rates. All simulated policy interventions reduce the total number of members, whereas all but primary socialization reduce newly recruited members. The intensity of the effects, however, varies across dependent variables and models. Conclusions Agent-based models effectively enable to develop theoretically driven and empirically calibrated simulations of organized crime. The simulations can fill the gaps in evaluation research in the field of organized crime and allow us to test different policies in different environmental contexts. | ||
650 | 4 | |a Generalized estimating equations | |
650 | 4 | |a Agent-based model | |
650 | 4 | |a Multiplex networks | |
650 | 4 | |a Involvement | |
650 | 4 | |a Recruitment | |
650 | 4 | |a Embeddedness | |
650 | 4 | |a Criminal networks | |
650 | 4 | |a Organized Crime | |
700 | 1 | |a Campedelli, Gian Maria |e VerfasserIn |0 (DE-588)1313963941 |0 (DE-627)1876336447 |4 aut | |
700 | 1 | |a Szekely, Aron |e VerfasserIn |4 aut | |
700 | 1 | |8 1\p |a Paolucci, Mario |e VerfasserIn |0 (DE-588)1318719569 |0 (DE-627)1880374331 |4 aut | |
700 | 1 | |a Andrighetto, Giulia |e VerfasserIn |0 (DE-588)1318719690 |0 (DE-627)188037448X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of quantitative criminology |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985 |g 38(2022), 1, Seite 197-237 |h Online-Ressource |w (DE-627)320578003 |w (DE-600)2017241-2 |w (DE-576)104082321 |x 1573-7799 |7 nnas |
773 | 1 | 8 | |g volume:38 |g year:2022 |g number:1 |g pages:197-237 |
856 | |u https://link.springer.com/content/pdf/10.1007/s10940-020-09489-z.pdf |x unpaywall |z Vermutlich kostenfreier Zugang |h publisher [open (via crossref license)] | ||
856 | 4 | 0 | |u https://doi.org/10.1007/s10940-020-09489-z |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-020-09489-z |x Verlag |z kostenfrei |3 Volltext |
883 | |8 1 |a cgwrk |d 20241001 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | ||
935 | |a mkri | ||
951 | |a AR | ||
ELC | |a 1 | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 4505071871 | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1884548784 | ||
LOK | |0 005 20240328043606 | ||
LOK | |0 008 240328||||||||||||||||ger||||||| | ||
LOK | |0 035 |a (DE-2619)KrimDok#2024-03-20#7EF890269DD9D5103B77A1ECA7FF2D4F0CB11CD4 | ||
LOK | |0 040 |a DE-2619 |c DE-627 |d DE-2619 | ||
LOK | |0 092 |o n | ||
LOK | |0 852 |a DE-2619 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a zota |a tiep | ||
OAS | |a 1 | ||
ORI | |a SA-MARC-krimdoka001.raw |