To be or not to be? A spatial predictive crime model for Rochester

This project uses a spatial model (Geographically Weighted Regression) to relate various physical and social features to crime rates. Besides making interesting predictions from basic data statistics, the trained model can be used to predict on the test data. The high accuracy of this prediction on...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autores principales: Acharyya, Rupam (Autor) ; Tanveer, Md Iftekar (Autor) ; Shivkumar, Sabyasachi (Autor) ; Chattoraj, Ankani (Autor) ; Ali, Mohammad Rafayet (Autor)
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2020
En:Año: 2020
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway
Descripción
Sumario:This project uses a spatial model (Geographically Weighted Regression) to relate various physical and social features to crime rates. Besides making interesting predictions from basic data statistics, the trained model can be used to predict on the test data. The high accuracy of this prediction on test data then allows us to make predictions of crime probabilities in different areas based on the location, the population, the property rate, the time of the day/year and so on. This then further gives us the idea that an application can be built to help people traveling around Rochester be aware when and if they enter crime prone area