Improving Crime Count Forecasts Using Twitter and Taxi Data
Crime prediction is crucial to criminal justice decision makers and efforts to prevent crime. The paper evaluates the explanatory and predictive value of human activity patterns derived from taxi trip, Twitter and Foursquare data. Analysis of a six-month period of crime data for New York City shows...
1. VerfasserIn: | |
---|---|
Beteiligte: | ; |
Medienart: | Elektronisch Buch |
Sprache: | Englisch |
Veröffentlicht: |
2020
|
In: | Jahr: 2020 |
Online-Zugang: |
Volltext (kostenfrei) Volltext (kostenfrei) |
Verfügbarkeit prüfen: | HBZ Gateway |
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | 1866589210 | ||
003 | DE-627 | ||
005 | 20250113054910.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231020s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.dss.2018.07.003 |2 doi | |
035 | |a (DE-627)1866589210 | ||
035 | |a (DE-599)KXP1866589210 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a 2,1 |2 ssgn | ||
100 | 1 | |a Härdle, Wolfgang Karl |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Improving Crime Count Forecasts Using Twitter and Taxi Data |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Crime prediction is crucial to criminal justice decision makers and efforts to prevent crime. The paper evaluates the explanatory and predictive value of human activity patterns derived from taxi trip, Twitter and Foursquare data. Analysis of a six-month period of crime data for New York City shows that these data sources improve predictive accuracy for property crime by 19% compared to using only demographic data. This effect is strongest when the novel features are used together, yielding new insights into crime prediction. Notably and in line with social disorganization theory, the novel features cannot improve predictions for violent crimes | ||
700 | 1 | |a Vomfell, Lara |e VerfasserIn |4 aut | |
700 | 1 | |a Lessmann, Stefan |e VerfasserIn |4 aut | |
856 | |u https://arxiv.org/pdf/2009.03703 |x unpaywall |z Vermutlich kostenfreier Zugang |h repository [oa repository (via OAI-PMH doi match)] | ||
856 | 4 | 0 | |u http://arxiv.org/abs/2009.03703 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://doi.org/10.1016/j.dss.2018.07.003 |x Resolving-System |z kostenfrei |3 Volltext |
935 | |a mkri | ||
951 | |a BO | ||
ELC | |a 1 | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 4394225809 | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1866589210 | ||
LOK | |0 005 20231020043637 | ||
LOK | |0 008 231020||||||||||||||||ger||||||| | ||
LOK | |0 035 |a (DE-2619)CORE88806406 | ||
LOK | |0 040 |a DE-2619 |c DE-627 |d DE-2619 | ||
LOK | |0 092 |o n | ||
LOK | |0 852 |a DE-2619 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a core | ||
OAS | |a 1 | ||
ORI | |a SA-MARC-krimdoka001.raw |