"Can Robbery and Other Theft Help Explain the Textbook Currency-demand Puzzle? Two Dreadful Models of Money Demand with an Endogenous Probability of Crime"

This paper attempts to explain one version of an empirical puzzle noted by Mankiw (2003): a Baumol-Tobin inventory-theoretic money demand equation predicts that the average U.S. adult should have held approximately $551.05 in currency and coin in 1995, while data show an average of $100. The models...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Greg Hannsgen (Autor)
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000cam a22000002c 4500
001 186633395X
003 DE-627
005 20250207054832.0
007 cr uuu---uuuuu
008 231019nuuuuuuuuxx |||||o 00| ||eng c
035 |a (DE-627)186633395X 
035 |a (DE-599)KXP186633395X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Greg Hannsgen  |e VerfasserIn  |4 aut 
245 1 0 |a "Can Robbery and Other Theft Help Explain the Textbook Currency-demand Puzzle? Two Dreadful Models of Money Demand with an Endogenous Probability of Crime" 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a This paper attempts to explain one version of an empirical puzzle noted by Mankiw (2003): a Baumol-Tobin inventory-theoretic money demand equation predicts that the average U.S. adult should have held approximately $551.05 in currency and coin in 1995, while data show an average of $100. The models in this paper help explain this discrepancy using two assumptions: (1) the probabilities of being robbed or pick-pocketed, or having a purse snatched, depend on the amount of cash held; and (2) there are costs of being robbed other than loss of cash, such as injury, medical bills, lost time at work, and trauma. Two models are presented: a dynamic, stochastic model with both instantaneous and decaying noncash costs of robbery, and a revised version of the inventory-theoretic model that includes one-period noncash costs. The former model yields an easily interpreted first-order condition for money demand involving various marginal costs and benefits of holding cash. The latter model gives quantitative solutions for money demand that come much closer to matching the 1995 data--$75.98 for one plausible set of parameters. This figure implies that consumers held approximately $96 billion less cash in May 1995 than they would have in a world without crime. The modified Baumol-Tobin model predicts a large increase in household money demand in 2005, mostly due to reduced crime rates. 
650 4 |a Research 
856 4 0 |u https://core.ac.uk/download/pdf/6366532.pdf  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4392979687 
LOK |0 003 DE-627 
LOK |0 004 186633395X 
LOK |0 005 20231019043710 
LOK |0 008 231019||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE2539398 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw