Semi-Supervised Learning for Detecting Human Trafficking

Human trafficking is one of the most atrocious crimes and among the challenging problems facing law enforcement which demands attention of global magnitude. In this study, we leverage textual data from the website "Backpage"- used for classified advertisement- to discern potential patterns...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autores principales: Alvari, Hamidreza (Autor) ; Snyder, J. E. Kelly (Autor) ; Shakarian, Paulo (Autor)
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2017
En: Security informatics
Año: 2017
Acceso en línea: Volltext (kostenfrei)
Volltext (kostenfrei)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000caa a22000002c 4500
001 1866305220
003 DE-627
005 20250115054909.0
007 cr uuu---uuuuu
008 231019s2017 xx |||||o 00| ||eng c
024 7 |a 10.1186/s13388-017-0029-8  |2 doi 
035 |a (DE-627)1866305220 
035 |a (DE-599)KXP1866305220 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Alvari, Hamidreza  |e VerfasserIn  |4 aut 
245 1 0 |a Semi-Supervised Learning for Detecting Human Trafficking 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Human trafficking is one of the most atrocious crimes and among the challenging problems facing law enforcement which demands attention of global magnitude. In this study, we leverage textual data from the website "Backpage"- used for classified advertisement- to discern potential patterns of human trafficking activities which manifest online and identify advertisements of high interest to law enforcement. Due to the lack of ground truth, we rely on a human analyst from law enforcement, for hand-labeling a small portion of the crawled data. We extend the existing Laplacian SVM and present S3VM-R, by adding a regularization term to exploit exogenous information embedded in our feature space in favor of the task at hand. We train the proposed method using labeled and unlabeled data and evaluate it on a fraction of the unlabeled data, herein referred to as unseen data, with our expert's further verification. Results from comparisons between our method and other semi-supervised and supervised approaches on the labeled data demonstrate that our learner is effective in identifying advertisements of high interest to law enforcemen 
650 4 |a Research 
700 1 |a Snyder, J. E. Kelly  |e VerfasserIn  |4 aut 
700 1 |a Shakarian, Paulo  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Security informatics  |d Heidelberg : Springer, 2012  |g (2017)  |h Online-Ressource  |w (DE-627)689617585  |w (DE-600)2658119-X  |w (DE-576)36487449X  |x 2190-8532  |7 nnas 
773 1 8 |g year:2017 
856 |u https://security-informatics.springeropen.com/track/pdf/10.1186/s13388-017-0029-8  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h publisher [open (via page says license)] 
856 4 0 |u http://arxiv.org/abs/1705.10786  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://doi.org/10.1186/s13388-017-0029-8  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4392948749 
LOK |0 003 DE-627 
LOK |0 004 1866305220 
LOK |0 005 20231019043627 
LOK |0 008 231019||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE42869973 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw