Generalized Spatial Regression with Differential Regularization

We aim at analyzing geostatistical and areal data observed over irregularly shaped spatial domains and having a distribution within the exponential family. We propose a generalized additive model that allows to account for spatially-varying covariate information. The model is fitted by maximizing a...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Sangalli, Laura M. (VerfasserIn)
Beteiligte: Wilhelm, Matthieu
Medienart: Elektronisch Aufsatz
Sprache:Englisch
Veröffentlicht: 2016
In: The journal of statistical computation and simulation
Jahr: 2016
Online-Zugang: Volltext (kostenfrei)
Volltext (kostenfrei)
Journals Online & Print:
Lade...
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:
Beschreibung
Zusammenfassung:We aim at analyzing geostatistical and areal data observed over irregularly shaped spatial domains and having a distribution within the exponential family. We propose a generalized additive model that allows to account for spatially-varying covariate information. The model is fitted by maximizing a penalized log-likelihood function, with a roughness penalty term that involves a differential quantity of the spatial field, computed over the domain of interest. Efficient estimation of the spatial field is achieved resorting to the finite element method, which provides a basis for piecewise polynomial surfaces. The proposed model is illustrated by an application to the study of criminality in the city of Portland, Oregon, USA
ISSN:1563-5163
DOI:10.1080/00949655.2016.1182532