Mental Illness as a Sentencing Determinant: A Comparative Case Law Analysis Based on a Machine Learning Approach

This study identifies factors that contribute to sentencing outcomes for criminally sentenced individuals experiencing mental disorders, in two U.S. states with divergent sociopolitical ideologies. Recent case law (n = 130) from appellate courts in New York and Kansas (from 2020 to 2021) was analyze...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Thomaidou, Mia A. (VerfasserIn)
Beteiligte: Berryessa, Colleen M.
Medienart: Elektronisch Aufsatz
Sprache:Englisch
Veröffentlicht: 2023
In: Criminal justice and behavior
Jahr: 2023, Band: 50, Heft: 7, Seiten: 976-995
Online-Zugang: Volltext (lizenzpflichtig)
Journals Online & Print:
Lade...
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:

MARC

LEADER 00000naa a22000002c 4500
001 1850950180
003 DE-627
005 20230626043611.0
007 cr uuu---uuuuu
008 230626s2023 xx |||||o 00| ||eng c
024 7 |a 10.1177/00938548231170801  |2 doi 
035 |a (DE-627)1850950180 
035 |a (DE-599)KXP1850950180 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Thomaidou, Mia A.  |e VerfasserIn  |4 aut 
245 1 0 |a Mental Illness as a Sentencing Determinant: A Comparative Case Law Analysis Based on a Machine Learning Approach 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a This study identifies factors that contribute to sentencing outcomes for criminally sentenced individuals experiencing mental disorders, in two U.S. states with divergent sociopolitical ideologies. Recent case law (n = 130) from appellate courts in New York and Kansas (from 2020 to 2021) was analyzed using regression and machine learning to predict sentence severity for individuals experiencing mental disorders. Across both states, trauma-related and personality disorders led to the most severe sentences, while paraphilia, addiction, and mood disorders had the lowest probability of imprisonment. Sentencing outcomes in Kansas were significantly more severe as compared with New York. A classification analysis identified important patterns of sentencing determinants that predicted which mental disorders were more likely to lead to incarceration. Findings and implications are discussed in relation to punishment disparities as well as the potentials and pitfalls regarding the use of machine learning approaches in criminal justice research and policy. 
650 4 |a Machine Learning 
650 4 |a Political Ideology 
650 4 |a Mental Illness 
650 4 |a Sentencing 
650 4 |a Criminal Justice 
700 1 |a Berryessa, Colleen M.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Criminal justice and behavior  |d Thousand Oaks, Calif. [u.a.] : Sage Publications, 1974  |g 50(2023), 7, Seite 976-995  |h Online-Ressource  |w (DE-627)306656345  |w (DE-600)1500128-3  |w (DE-576)081985487  |x 1552-3594  |7 nnas 
773 1 8 |g volume:50  |g year:2023  |g number:7  |g pages:976-995 
856 4 0 |u https://doi.org/10.1177/00938548231170801  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4343387127 
LOK |0 003 DE-627 
LOK |0 004 1850950180 
LOK |0 005 20230626043611 
LOK |0 008 230626||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2023-06-25#530036308663429CCC61B6DB4A13503F8CF93C8B 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw