Identifying predictors of inpatient verbal aggression in a forensic psychiatric setting using a tree-based modeling approach

Inpatient violence poses a great risk to the health and well-being of other patients and members of staff. Previous research has shown that prevalence rates of violent behavior are particularly high in forensic psychiatric settings. Thus, the reliable identification of forensic inpatients who are pa...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Neumann, Merten (Autor)
Otros Autores: Klatt, Thimna
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: September 2022
En: Journal of interpersonal violence
Año: 2022, Volumen: 37, Número: 17/18, Páginas: NP16351-NP16376
Acceso en línea: Presumably Free Access
Volltext (Verlag)
Volltext (lizenzpflichtig)
Journals Online & Print:
Invalid server response. (JOP server down?)
Verificar disponibilidad: HBZ Gateway
Palabras clave:
Descripción
Sumario:Inpatient violence poses a great risk to the health and well-being of other patients and members of staff. Previous research has shown that prevalence rates of violent behavior are particularly high in forensic psychiatric settings. Thus, the reliable identification of forensic inpatients who are particularly at risk for violent behavior is an important aspect of risk management. In the present study, we analyzed clinicians’ assessments of N = 504 male and female inpatients of German forensic mental health institutions in order to identify risk factors for verbal institutional violence. Using a tree-based modeling approach, we found the following variables to be predictors of verbal aggression: gender, insight into the illness, number of prior admissions to psychiatric hospitals, and insight into the iniquity of the offence. A high number of prior admissions to psychiatric hospitals seems to be a risk factor for verbal aggression amongst men whereas it showed the opposite effect amongst women. Our results highlight the importance of dynamic risk factors, such as poor insight into the own illness, in the prediction of violent incidents. With regard to future research, we argue for a stronger emphasis on nonparametric models as well as on potential interaction effects of risk and protective factors.
Notas:Literaturverzeichnis
Descripción Física:Diagramme
ISSN:1552-6518
DOI:10.1177/08862605211021972