Nonresponse bias when estimating victimization rates: A nonresponse analysis using latent class analysis

The study expands empirical knowledge on nonresponse bias when estimating victimization rates by using latent class analysis (LCA). Based on information about proxy-nonrespondents (hard-to-reach respondents and soft refusals), the study identifies subgroup(s) of persons who are systematically underr...

Full description

Saved in:  
Bibliographic Details
Main Author: Leitgöb-Guzy, Nathalie 1982- (Author)
Format: Electronic Article
Language:English
Published: 2022
In: International review of victimology
Year: 2022, Volume: 28, Issue: 1, Pages: 109-133
Online Access: Volltext (lizenzpflichtig)
Journals Online & Print:
Drawer...
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000caa a22000002 4500
001 1786542943
003 DE-627
005 20220121102414.0
007 cr uuu---uuuuu
008 220120s2022 xx |||||o 00| ||eng c
024 7 |a 10.1177/02697580211014781  |2 doi 
035 |a (DE-627)1786542943 
035 |a (DE-599)KXP1786542943 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Leitgöb-Guzy, Nathalie  |d 1982-  |e VerfasserIn  |0 (DE-588)1072590123  |0 (DE-627)827811322  |0 (DE-576)434084824  |4 aut 
109 |a Leitgöb-Guzy, Nathalie 1982-  |a Guzy, Nathalie Leitgöb- 1982-  |a Guzy, Nathalie 1982- 
245 1 0 |a Nonresponse bias when estimating victimization rates: A nonresponse analysis using latent class analysis 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The study expands empirical knowledge on nonresponse bias when estimating victimization rates by using latent class analysis (LCA). Based on information about proxy-nonrespondents (hard-to-reach respondents and soft refusals), the study identifies subgroup(s) of persons who are systematically underrepresented by refusal and unreachability and determines whether an over- or underestimation of different offense-specific crime rates (prevalence and incidence rates) is to be expected. Therefore, a broad review of the current state of research is carried out, followed by a nonresponse analysis of a large-scale victimization survey conducted in Germany (n = 35,503). The paper illustrates that a variety of factors must be considered when analyzing nonresponse in victimization surveys and that the current state of research does not allow definitive conclusions about the amount and direction of nonresponse bias. The following analysis shows that LCA constitutes an excellent approach to determine nonresponse bias in surveys. In each sample, one class of person was identified that is systematically underrepresented, both by refusal and unreachability. Here, victimization rates of violent crime tend to be significantly higher, indicating an underestimation of crime rates. 
650 4 |a Proxy-nonrespondents 
650 4 |a Latent Class Analysis 
650 4 |a Victimization rates 
650 4 |a Nonresponse analysis 
650 4 |a nonresponse bias 
650 4 |a Victimization Surveys 
773 0 8 |i Enthalten in  |t International review of victimology  |d Los Angeles, Calif. [u.a.] : Sage, 1989  |g 28(2022), 1, Seite 109-133  |h Online-Ressource  |w (DE-627)573752672  |w (DE-600)2442080-3  |w (DE-576)309208572  |x 2047-9433  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:1  |g pages:109-133 
856 4 0 |u https://doi.org/10.1177/02697580211014781  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4038909816 
LOK |0 003 DE-627 
LOK |0 004 1786542943 
LOK |0 005 20220120061530 
LOK |0 008 220120||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2022-01-19#984C2FCE6CBD11CEC41E1E369A555315972FBB6F 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw