Dude, Where’s My Treatment Effect? Errors in Administrative Data Linking and the Destruction of Statistical Power in Randomized Experiments

Objective The increasing availability of large administrative datasets has led to an exciting innovation in criminal justice research—using administrative data to measure experimental outcomes in lieu of costly primary data collection. We demonstrate that this type of randomized experiment can have...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Tahamont, Sarah (Autor)
Otros Autores: Jelveh, Zubin ; Chalfin, Aaron ; Yan, Shi ; Hansen, Benjamin
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2021
En: Journal of quantitative criminology
Año: 2021, Volumen: 37, Número: 3, Páginas: 715-749
Acceso en línea: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000caa a22000002c 4500
001 1767142854
003 DE-627
005 20241231020111.0
007 cr uuu---uuuuu
008 210817s2021 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10940-020-09461-x  |2 doi 
035 |a (DE-627)1767142854 
035 |a (DE-599)KXP1767142854 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |8 1\p  |a Tahamont, Sarah  |e VerfasserIn  |0 (DE-588)1210511037  |0 (DE-627)1698546971  |0 (DE-576)44332719X  |4 aut 
109 |a Tahamont, Sarah 
245 1 0 |a Dude, Where’s My Treatment Effect? Errors in Administrative Data Linking and the Destruction of Statistical Power in Randomized Experiments 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Objective The increasing availability of large administrative datasets has led to an exciting innovation in criminal justice research—using administrative data to measure experimental outcomes in lieu of costly primary data collection. We demonstrate that this type of randomized experiment can have an unfortunate consequence: the destruction of statistical power. Combining experimental data with administrative records to track outcomes of interest typically requires linking datasets without a common identifier. In order to minimize mistaken linkages, researchers often use stringent linking rules like “exact matching” to ensure that speculative matches do not lead to errors in an analytic dataset. We show that this, seemingly conservative, approach leads to underpowered experiments, leaves real treatment effects undetected, and can therefore have profound implications for entire experimental literatures. Methods We derive an analytic result for the consequences of linking errors on statistical power and show how the problem varies across combinations of relevant inputs, including linking error rate, outcome density and sample size. Results Given that few experiments are overly well-powered, even small amounts of linking error can have considerable impact on Type II error rates. In contrast to exact matching, machine learning-based probabilistic matching algorithms allow researchers to recover a considerable share of the statistical power lost under stringent data-linking rules. Conclusion Our results demonstrate that probabilistic linking substantially outperforms stringent linking criteria. Failure to implement linking procedures designed to reduce linking errors can have dire consequences for subsequent analyses and, more broadly, for the viability of this type of experimental research. 
650 4 |a machine learning 
650 4 |a Record linking 
650 4 |a Administrative data 
650 4 |a Randomized experiments 
700 1 |a Jelveh, Zubin  |e VerfasserIn  |4 aut 
700 1 |8 2\p  |a Chalfin, Aaron  |e VerfasserIn  |0 (DE-588)1129112306  |0 (DE-627)883800403  |0 (DE-576)414816854  |4 aut 
700 1 |a Yan, Shi  |e VerfasserIn  |4 aut 
700 1 |a Hansen, Benjamin  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 37(2021), 3, Seite 715-749  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:37  |g year:2021  |g number:3  |g pages:715-749 
856 4 0 |u https://doi.org/10.1007/s10940-020-09461-x  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-020-09461-x  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3969410797 
LOK |0 003 DE-627 
LOK |0 004 1767142854 
LOK |0 005 20210817061635 
LOK |0 008 210817||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-08-16#79EEA0F8E61457F5B0964A1542E5A3717C1D49A6 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw