The Application of Machine Learning to a General Risk–Need Assessment Instrument in the Prediction of Criminal Recidivism

The Level of Service/Case Management Inventory (LS/CMI) is one of the most frequently used tools to assess criminogenic risk–need in justice-involved individuals. Meta-analytic research demonstrates strong predictive accuracy for various recidivism outcomes. In this exploratory study, we applied mac...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autores principales: Ghasemi, Mehdi (Autor) ; Anvari, Daniel (Autor) ; Atapour, Mahshid (Autor) ; Stephen wormith, J. (Autor) ; Stockdale, Keira C. (Autor) ; Spiteri, Raymond J. (Autor)
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2021
En: Criminal justice and behavior
Año: 2021, Volumen: 48, Número: 4, Páginas: 518-538
Acceso en línea: Presumably Free Access
Volltext (Resolving-System)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000caa a22000002c 4500
001 1751548252
003 DE-627
005 20250225100605.0
007 cr uuu---uuuuu
008 210317s2021 xx |||||o 00| ||eng c
024 7 |a 10.1177/0093854820969753  |2 doi 
035 |a (DE-627)1751548252 
035 |a (DE-599)KXP1751548252 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Ghasemi, Mehdi  |e VerfasserIn  |0 (DE-588)1220443778  |0 (DE-627)1737355981  |4 aut 
109 |a Ghasemi, Mehdi 
245 1 4 |a The Application of Machine Learning to a General Risk–Need Assessment Instrument in the Prediction of Criminal Recidivism 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The Level of Service/Case Management Inventory (LS/CMI) is one of the most frequently used tools to assess criminogenic risk–need in justice-involved individuals. Meta-analytic research demonstrates strong predictive accuracy for various recidivism outcomes. In this exploratory study, we applied machine learning (ML) algorithms (decision trees, random forests, and support vector machines) to a data set with nearly 100,000 LS/CMI administrations to provincial corrections clientele in Ontario, Canada, and approximately 3 years follow-up. The overall accuracies and areas under the receiver operating characteristic curve (AUCs) were comparable, although ML outperformed LS/CMI in terms of predictive accuracy for the middle scores where it is hardest to predict the recidivism outcome. Moreover, ML improved the AUCs for individual scores to near 0.60, from 0.50 for the LS/CMI, indicating that ML also improves the ability to rank individuals according to their probability of recidivating. Potential considerations, applications, and future directions are discussed. 
650 4 |a Machine Learning 
650 4 |a Predictive accuracy 
650 4 |a risk–need assessment 
650 4 |a LS/CMI 
700 1 |a Anvari, Daniel  |e VerfasserIn  |4 aut 
700 1 |a Atapour, Mahshid  |e VerfasserIn  |4 aut 
700 1 |a Stephen wormith, J.  |e VerfasserIn  |4 aut 
700 1 |a Stockdale, Keira C.  |e VerfasserIn  |4 aut 
700 1 |a Spiteri, Raymond J.  |e VerfasserIn  |0 (orcid)0000-0002-3513-6237  |4 aut 
773 0 8 |i Enthalten in  |t Criminal justice and behavior  |d Thousand Oaks, Calif. [u.a.] : Sage Publications, 1974  |g 48(2021), 4, Seite 518-538  |h Online-Ressource  |w (DE-627)306656345  |w (DE-600)1500128-3  |w (DE-576)081985487  |x 1552-3594  |7 nnas 
773 1 8 |g volume:48  |g year:2021  |g number:4  |g pages:518-538 
856 |u https://journals.sagepub.com/doi/pdf/10.1177/0093854820969753  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h publisher [deprecated] 
856 4 0 |u https://doi.org/10.1177/0093854820969753  |x Resolving-System  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3889972276 
LOK |0 003 DE-627 
LOK |0 004 1751548252 
LOK |0 005 20210317061535 
LOK |0 008 210317||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-03-16#33CCC88FA3319333803C95C9B739B5FA320D3F50 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw