The Analysis of Bounded Count Data in Criminology
Criminological research utilizes several types of delinquency scales, including frequency counts and, increasingly, variety scores. The latter counts the number of distinct types of crimes an individual has committed. Often, variety scores are modeled via count regression techniques (e.g., Poisson,...
Autor principal: | |
---|---|
Otros Autores: | ; |
Tipo de documento: | Electrónico Artículo |
Lenguaje: | Inglés |
Publicado: |
2018
|
En: |
Journal of quantitative criminology
Año: 2018, Volumen: 34, Número: 2, Páginas: 591-607 |
Acceso en línea: |
Volltext (Resolving-System) |
Journals Online & Print: | |
Verificar disponibilidad: | HBZ Gateway |
Palabras clave: |
MARC
LEADER | 00000naa a22000002 4500 | ||
---|---|---|---|
001 | 1688913319 | ||
003 | DE-627 | ||
005 | 20200130094147.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200130s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10940-017-9346-9 |2 doi | |
035 | |a (DE-627)1688913319 | ||
035 | |a (DE-599)KXP1688913319 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Britt, Chester L. |d -2016 |e VerfasserIn |0 (DE-588)17129873X |0 (DE-627)061485381 |0 (DE-576)167891634 |4 aut | |
109 | |a Britt, Chester L. -2016 |a Britt, Chester -2016 | ||
245 | 1 | 4 | |a The Analysis of Bounded Count Data in Criminology |c Chester L. Britt, Michael Rocque, Gregory M. Zimmerman |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Criminological research utilizes several types of delinquency scales, including frequency counts and, increasingly, variety scores. The latter counts the number of distinct types of crimes an individual has committed. Often, variety scores are modeled via count regression techniques (e.g., Poisson, negative binomial), which are best suited to the analysis of unbounded count data. Variety scores, however, are inherently bounded. | ||
650 | 4 | |a Negative binomial regression | |
650 | 4 | |a Poisson regression | |
650 | 4 | |a Count data | |
650 | 4 | |a Variety scores | |
650 | 4 | |a Binomial regression | |
700 | 1 | |a Rocque, Michael |e VerfasserIn |0 (DE-588)1115209809 |0 (DE-627)869512390 |0 (DE-576)381797961 |4 aut | |
700 | 1 | |a Zimmerman, Gregory M. |e VerfasserIn |0 (DE-588)1139123556 |0 (DE-627)896783502 |0 (DE-576)357462173 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of quantitative criminology |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985 |g 34(2018), 2, Seite 591-607 |h Online-Ressource |w (DE-627)320578003 |w (DE-600)2017241-2 |w (DE-576)104082321 |x 1573-7799 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2018 |g number:2 |g pages:591-607 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/s10940-017-9346-9 |x Resolving-System |3 Volltext |
935 | |a mkri | ||
951 | |a AR | ||
ELC | |a 1 | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 3583385330 | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1688913319 | ||
LOK | |0 005 20200130094147 | ||
LOK | |0 008 200130||||||||||||||||ger||||||| | ||
LOK | |0 040 |a DE-21-110 |c DE-627 |d DE-21-110 | ||
LOK | |0 092 |o n | ||
LOK | |0 689 |a s |a Binomial regression | ||
LOK | |0 689 |a s |a Count data | ||
LOK | |0 689 |a s |a Variety scores | ||
LOK | |0 689 |a s |a Poisson regression | ||
LOK | |0 852 |a DE-21-110 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a krub |a krzo | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 3957448891 | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1688913319 | ||
LOK | |0 005 20210725061641 | ||
LOK | |0 008 210725||||||||||||||||ger||||||| | ||
LOK | |0 035 |a (DE-2619)KrimDok#2021-07-24#ED9F5CCA78F5246190778CB56E873073D849F0D9 | ||
LOK | |0 040 |a DE-2619 |c DE-627 |d DE-2619 | ||
LOK | |0 092 |o n | ||
LOK | |0 852 |a DE-2619 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a zota | ||
ORI | |a SA-MARC-krimdoka001.raw |