Utilizing alternate models for analyzing count outcomes
Although ordinary least squares (OLS) regression was once a common tool for modeling discrete count outcomes in criminology and criminal justice, the past several decades have seen an increasing reliance on regression techniques specifically designed for such purposes. Utilizing a practical example...
Main Author: | |
---|---|
Contributors: | |
Format: | Electronic Article |
Language: | English |
Published: |
2017
|
In: |
Crime & delinquency
Year: 2017, Volume: 63, Issue: 1, Pages: 61-76 |
Online Access: |
Volltext (Resolving-System) |
Journals Online & Print: | |
Check availability: | HBZ Gateway |
Keywords: |
MARC
LEADER | 00000caa a2200000 c 4500 | ||
---|---|---|---|
001 | 1577205472 | ||
003 | DE-627 | ||
005 | 20180824114702.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180703s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1177/0011128716678848 |2 doi | |
035 | |a (DE-627)1577205472 | ||
035 | |a (DE-576)507205472 | ||
035 | |a (DE-599)BSZ507205472 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Rydberg, Jason |0 (DE-588)1211428044 |0 (DE-627)1699326010 |0 (DE-576)341170518 |4 aut | |
109 | |a Rydberg, Jason | ||
245 | 1 | 0 | |a Utilizing alternate models for analyzing count outcomes |c Jason Rydberg and Danielle Marie Carkin |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Although ordinary least squares (OLS) regression was once a common tool for modeling discrete count outcomes in criminology and criminal justice, the past several decades have seen an increasing reliance on regression techniques specifically designed for such purposes. Utilizing a practical example from the 1958 Philadelphia Birth Cohort, this article describes and compares various estimation strategies for modeling such outcome variables, including a discussion of the inappropriateness of OLS for such purposes and specific features of discrete count distributions that complicate statistical inference—overdispersion, non-independence, and excess zeros. Practical advice for selecting an appropriate modeling strategy is offered. | ||
700 | 1 | |a Carkin, Danielle Marie |0 (DE-588)116680982X |0 (DE-627)1030677387 |0 (DE-576)510367267 |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Crime & delinquency |d Thousand Oaks, Calif. [u.a.] : Sage Publications, 1960 |g 63(2017), 1, Seite 61-76 |h Online-Ressource |w (DE-627)306655128 |w (DE-600)1499997-3 |w (DE-576)081985045 |x 1552-387X |7 nnas |
773 | 1 | 8 | |g volume:63 |g year:2017 |g number:1 |g pages:61-76 |
856 | 4 | 0 | |u http://dx.doi.org/10.1177/0011128716678848 |x Resolving-System |3 Volltext |
951 | |a AR | ||
ELC | |a 1 | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 3015805843 | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1577205472 | ||
LOK | |0 005 20180703103332 | ||
LOK | |0 008 180703||||||||||||||||ger||||||| | ||
LOK | |0 040 |a DE-21-110 |c DE-627 |d DE-21-110 | ||
LOK | |0 689 |a s |a Quantitative | ||
LOK | |0 689 |a s |a Count regression models | ||
LOK | |0 689 |a s |a Zero-inflated models | ||
LOK | |0 689 |a s |a Hurdle models | ||
LOK | |0 689 |a s | ||
LOK | |0 852 |a DE-21-110 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a krub | ||
ORI | |a SA-MARC-krimdoka001.raw |