Using automated vehicle locator data to classify discretionary police patrol across space

Place-based policing strategies assume officers have sufficient discretionary time to engage in proactive crime prevention activities, yet little research examines the spatial distribution of uncommitted patrol time. This study analyzes automated vehicle locator (AVL) data from Manchester, New Hamps...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
VerfasserInnen: Piza, Eric L. (Verfasst von) ; Connealy, Nathan T. (Verfasst von) ; Reid, Savannah A. (Verfasst von) ; Palermo, Christianna M. (Verfasst von)
Medienart: Elektronisch Aufsatz
Sprache:Englisch
Veröffentlicht: 2025
In: Journal of criminal justice
Jahr: 2025, Band: 101, Seiten: 1-12
Online-Zugang: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:

MARC

LEADER 00000naa a2200000 c 4500
001 1944958371
003 DE-627
005 20251205142427.0
007 cr uuu---uuuuu
008 251205s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcrimjus.2025.102543  |2 doi 
035 |a (DE-627)1944958371 
035 |a (DE-599)KXP1944958371 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Piza, Eric L.  |e VerfasserIn  |0 (DE-588)121088366X  |0 (DE-627)169875759X  |0 (DE-576)411913328  |4 aut 
109 |a Piza, Eric L.  |a Piza, Eric 
245 1 0 |a Using automated vehicle locator data to classify discretionary police patrol across space  |c Eric L. Piza, Nathan T. Connealy, Savannah A. Reid, Christianna M. Palermo 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Literaturverzeichnis: Seite 10-12 
520 |a Place-based policing strategies assume officers have sufficient discretionary time to engage in proactive crime prevention activities, yet little research examines the spatial distribution of uncommitted patrol time. This study analyzes automated vehicle locator (AVL) data from Manchester, New Hampshire (2022−2023) to classify discretionary police patrol patterns across 5878 street segments. Using over 9.7 million GPS coordinates recorded every 10 s from patrol vehicles, we measure the proportion of patrol time that is discretionary (not assigned to a call for service) versus committed (assigned to a call for service). Group-based trajectory modeling identified three distinct groups: 55 % of street segments had high discretionary time (averaging 50 % of monthly patrol time), 26 % had medium discretionary time (averaging 38 % of monthly patrol time), and 19 % had low discretionary time (averaging 36 % of monthly patrol time). Anselin Moran's I revealed significant clustering of both high and low discretionary time segments. Multinomial logistic regression examined factors predicting discretionary time clusters. Notably, none of the crime measures significantly predicted high discretionary time hot spots, suggesting a potential misalignment between patrol availability and crime prevention needs. Traffic-related calls for service were the only police measure positively associated with high discretionary time clusters. Areas with higher concentrated disadvantage and ambient population were more likely to be discretionary time hot spots, while theft was associated with lower odds of high discretionary clustering. These findings challenge assumptions underlying place-based policing interventions and suggest that discretionary patrol time may not naturally concentrate where it is most needed for crime prevention. 
650 4 |a Automated vehicle locator (AVL) 
650 4 |a Police Patrol 
650 4 |a Police Discretion 
650 4 |a Geographic information systems 
650 4 |a Crime-and-place 
650 4 |a Crime Prevention 
700 1 |a Connealy, Nathan T.  |e VerfasserIn  |0 (DE-588)1317983297  |0 (DE-627)1879797704  |4 aut 
700 1 |a Reid, Savannah A.  |e VerfasserIn  |4 aut 
700 1 |a Palermo, Christianna M.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of criminal justice  |d New York, NY [u.a.] : Pergamon Press, 1973  |g 101(2025), Artikel-ID 102543, Seite 1-12  |h Online-Ressource  |w (DE-627)320510484  |w (DE-600)2013351-0  |w (DE-576)259484784  |x 0047-2352  |7 nnas 
773 1 8 |g volume:101  |g year:2025  |g elocationid:102543  |g pages:1-12 
856 4 0 |u https://doi.org/10.1016/j.jcrimjus.2025.102543  |x Resolving-System  |z lizenzpflichtig  |3 Volltext  |7 1 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0047235225001928  |x Verlag  |z lizenzpflichtig  |3 Volltext  |7 1 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4823397959 
LOK |0 003 DE-627 
LOK |0 004 1944958371 
LOK |0 005 20251205142427 
LOK |0 008 251205||||||||||||||||ger||||||| 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 939   |a 05-12-25  |b l01 
ORI |a WA-MARC-krimdoka001.raw