Machine learning-based prediction analysis of unlawful activities to aid law enforcement

One of our society's most significant and pervasive issues is crime. Numerous crimes are perpetrated often each day. The development of policing strategies and the implementation of crime prevention and control depend greatly on crime prediction. The most popular prediction technique right now...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autores principales: Mahesh, Vijayalakshmi G. V. 1978- (Autor) ; Hiremath, Shilpa (Autor) ; Prabha R., Chandra (Autor)
Tipo de documento: Print Artículo
Lenguaje:Inglés
Publicado: 2024
En: Forecasting cyber crimes in the age of the metaverse
Año: 2024, Páginas: 209-226
Verificar disponibilidad: HBZ Gateway

MARC

LEADER 00000naa a2200000 c 4500
001 194085816X
003 DE-627
005 20251111114250.0
007 tu
008 251111s2024 xx ||||| 00| ||eng c
020 |a 9798369302217 
035 |a (DE-627)194085816X 
035 |a (DE-599)KXP194085816X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Mahesh, Vijayalakshmi G. V.  |d 1978-  |e VerfasserIn  |0 (DE-588)1231113618  |0 (DE-627)1753588456  |4 aut 
109 |a Mahesh, Vijayalakshmi G. V. 1978- 
245 1 0 |a Machine learning-based prediction analysis of unlawful activities to aid law enforcement  |c Vijayalakshmi G. V. Mahesh (BMS Institute of Technology and Management, India), Shilpa Hiremath (BMS Institute of Technology and Management, India), and Chandra Prabha R. (BMS Institute of Technology and Management, India) 
264 1 |c 2024 
300 |b Illustrationen 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Literaturverzeichnis: Seite 225-226 
520 |a One of our society's most significant and pervasive issues is crime. Numerous crimes are perpetrated often each day. The development of policing strategies and the implementation of crime prevention and control depend greatly on crime prediction. The most popular prediction technique right now is machine learning. Little research, however, has rigorously contrasted various machine learning approaches for crime prediction. The dataset in this instance consists of the date and the annual crime rate for the corresponding years. The crime rate used in this project is only based on robberies. Utilising historical data, the authors employ the linear and random forest regression algorithms to estimate future crime rates. The algorithm receives the date as input, and the result is the total number of crimes that year. 
700 1 |a Hiremath, Shilpa  |e VerfasserIn  |0 (orcid)0000-0002-1577-8523  |4 aut 
700 1 |a Prabha R., Chandra  |e VerfasserIn  |0 (orcid)0000-0003-4236-2782  |4 aut 
773 0 8 |i Enthalten in  |t Forecasting cyber crimes in the age of the metaverse  |d Hershey, PA : IGI Global Publisher of Timely Knowledge, 2024  |g (2024), Seite 209-226  |h xxi, 285 Seiten  |w (DE-627)1869577353  |z 9798369302200  |z 9798369302217  |7 nnam 
773 1 8 |g year:2024  |g pages:209-226 
776 1 |o 10.4018/979-8-3693-0220-0.ch011 
951 |a AR 
ELC |b 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4802111487 
LOK |0 003 DE-627 
LOK |0 004 194085816X 
LOK |0 005 20251111114250 
LOK |0 008 251111||||||||||||||||ger||||||| 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
ORI |a WA-MARC-krimdoka001.raw