AI-driven approaches to reshape forensic practices: automating the tedious, augmenting the astute

Forensic investigation is ushering into a new era of transformation propelled by rapid technological developments and innovations. The criminals are getting smarter, and crimes are becoming more complex; in such a time dissemination of justice requires commensurate technological enhancement. This ch...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
VerfasserInnen: Singla, Anu (Verfasst von) ; Shekhar, Shashi (Verfasst von) ; Ahirwar, Neha (Verfasst von)
Medienart: Druck Aufsatz
Sprache:Englisch
Veröffentlicht: 2024
In: Cases on forensic and criminological science for criminal detection and avoidance
Jahr: 2024, Seiten: 280-312
Verfügbarkeit prüfen: HBZ Gateway

MARC

LEADER 00000naa a2200000 c 4500
001 1939427681
003 DE-627
005 20251024144328.0
007 tu
008 251024s2024 xx ||||| 00| ||eng c
020 |a 9781668498002 
035 |a (DE-627)1939427681 
035 |a (DE-599)KXP1939427681 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Singla, Anu  |e VerfasserIn  |4 aut 
245 1 0 |a AI-driven approaches to reshape forensic practices: automating the tedious, augmenting the astute  |c Anu Singla (Bundelkhand University, India), Shashi Shekhar (Bundelkhand University, India), and Neha Ahirwar (Bundelkhand University, India) 
264 1 |c 2024 
300 |b Illustration 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Literaturverzeichnis: Seite 299-312 
520 |a Forensic investigation is ushering into a new era of transformation propelled by rapid technological developments and innovations. The criminals are getting smarter, and crimes are becoming more complex; in such a time dissemination of justice requires commensurate technological enhancement. This chapter explores the vast potential of AI in revolutionizing Forensic Science and provides a succinct overview into the applicability of artificial intelligence (AI) and machine learning (ML) to facilitate classification, characterization, discrimination, differentiation, and recognition of forensic exhibits. This chapter further delves into the fundamental principles of supervised, unsupervised, semi-supervised, and reinforcement learning approaches and describes common ML methods which are frequently employed by researchers of this field. 
700 1 |a Shekhar, Shashi  |e VerfasserIn  |4 aut 
700 1 |a Ahirwar, Neha  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Cases on forensic and criminological science for criminal detection and avoidance  |d Hershey : IGI GLOBAL, 2024  |g (2024), Seite 280-312  |h xxiii, 454 Seiten  |w (DE-627)1884327281  |z 9781668498002  |7 nnam 
773 1 8 |g year:2024  |g pages:280-312 
776 1 |o 10.4018/978-1-6684-9800-2.ch010 
951 |a AR 
ELC |b 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4791491807 
LOK |0 003 DE-627 
LOK |0 004 1939427681 
LOK |0 005 20251024144328 
LOK |0 008 251024||||||||||||||||ger||||||| 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
ORI |a WA-MARC-krimdoka001.raw