Identifying high-risk firearms dealers: A machine learning study of rapidly diverted firearm sales in California

Research SummaryUsing firearm transaction and crime gun recovery records from California (2010-2021), we employ machine learning to identify dealers who sold largest number and highest fraction of guns recovered in crimes within 1 year of sale. This short "time-to-crime" (TTC) is a well-es...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
VerfasserInnen: Laqueur, Hannah S. (Verfasst von) ; Smirniotis, Colette (Verfasst von)
Medienart: Elektronisch Aufsatz
Sprache:Englisch
Veröffentlicht: 2025
In: Criminology & public policy
Jahr: 2025, Band: 24, Heft: 3, Seiten: 363-403
Online-Zugang: Volltext (kostenfrei)
Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:

MARC

LEADER 00000naa a22000002c 4500
001 193856605X
003 DE-627
005 20251016145530.0
007 cr uuu---uuuuu
008 251016s2025 xx |||||o 00| ||eng c
024 7 |a 10.1111/1745-9133.12692  |2 doi 
035 |a (DE-627)193856605X 
035 |a (DE-599)KXP193856605X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Laqueur, Hannah S.  |e VerfasserIn  |0 (DE-588)1206376902  |0 (DE-627)1692386980  |4 aut 
109 |a Laqueur, Hannah S.  |a Laqueur, Hannah 
245 1 0 |a Identifying high-risk firearms dealers: A machine learning study of rapidly diverted firearm sales in California 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Research SummaryUsing firearm transaction and crime gun recovery records from California (2010-2021), we employ machine learning to identify dealers who sold largest number and highest fraction of guns recovered in crimes within 1 year of sale. This short "time-to-crime" (TTC) is a well-established indicator of potential illegal activity by dealers or traffickers. We developed two primary prediction models: the first classifies dealer-years in the top 5% of 1-year crime gun sales volume (prediction model 1), the second identifies dealer-years in the top 5% based on the fraction of sales recovered within a year (prediction model 2). Both models demonstrated strong discriminative performance, with areas under the receiver operating curve (AUCs) of 0.95 and 0.86, respectively, and areas under the precision-recall curve (AUC-PRs) of 0.72 and 0.43. By comparison, a random classifier would be expected to achieve an AUC of 0.50 and an AUC-PR of 0.05. Prediction model 1 was particularly effective at identifying the highest risk dealers: Those with predictions exceeding 0.90 consistently ranked in the top 5% across multiple years, averaging 33 1-year crime gun sales annually. The machine learning models generally outperformed simpler regression and rule-based approaches, underscoring the value of data-adaptive methods for prediction. Key predictors included prior-year crime gun sales, the average age of purchasers, the proportion of "cheap" handgun sales, and the local gun robbery and assault rate. Policy ImplicationsFirearms dealers may engage in behaviors that facilitate the diversion of guns to criminal markets. Combining detailed transaction and recovery records with machine learning could help efficiently identify high-risk retailers for targeted enforcement to disrupt the flow of firearms to gun offenders. Future research is needed to determine whether a high number of short TTC sales as compared to a high fraction is a more reliable predictor of law evasion. 
650 4 |a crime guns 
650 4 |a firearms dealers 
650 4 |a Machine Learning 
650 4 |a Risk prediction 
650 4 |a short time-to-crime 
700 1 |a Smirniotis, Colette  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Criminology & public policy  |d Oxford [u.a.] : Wiley-Blackwell, 2001  |g 24(2025), 3, Seite 363-403  |h Online-Ressource  |w (DE-627)357169069  |w (DE-600)2094251-5  |w (DE-576)262493047  |x 1745-9133  |7 nnas 
773 1 8 |g volume:24  |g year:2025  |g number:3  |g pages:363-403 
856 4 0 |u https://doi.org/10.1111/1745-9133.12692  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1111/1745-9133.12692  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4788670496 
LOK |0 003 DE-627 
LOK |0 004 193856605X 
LOK |0 005 20251016145530 
LOK |0 008 251016||||||||||||||||ger||||||| 
LOK |0 040   |a DE-21-110  |c DE-627  |d DE-21-110 
LOK |0 092   |o n 
LOK |0 852   |a DE-21-110 
LOK |0 852 1  |9 00 
LOK |0 935   |a krzo 
OAS |a 1 
ORI |a WA-MARC-krimdoka001.raw