How to measure lineup fairness: concurrent and predictive validity of lineup-fairness measures

The current study examined the concurrent and predictive validity of four families of lineup-fairness measures – mock-witness measures, perceptual ratings, face-similarity algorithms, and resultant assessments (assessments based on eyewitness participants’ responses) – with 40 mock crime/lineup sets...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autores principales: Lee, Jungwon (Autor) ; Mansour, Jamal K. (Autor) ; Penrod, Steven (Autor)
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2025
En: Psychology, crime & law
Año: 2025, Volumen: 31, Número: 6, Páginas: 666-690
Acceso en línea: Volltext (lizenzpflichtig)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000caa a22000002c 4500
001 1930397283
003 DE-627
005 20250715052210.0
007 cr uuu---uuuuu
008 250714s2025 xx |||||o 00| ||eng c
024 7 |a 10.1080/1068316X.2024.2307358  |2 doi 
035 |a (DE-627)1930397283 
035 |a (DE-599)KXP1930397283 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Lee, Jungwon  |e VerfasserIn  |0 (orcid)0000-0003-3243-1123  |4 aut 
245 1 0 |a How to measure lineup fairness: concurrent and predictive validity of lineup-fairness measures 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The current study examined the concurrent and predictive validity of four families of lineup-fairness measures – mock-witness measures, perceptual ratings, face-similarity algorithms, and resultant assessments (assessments based on eyewitness participants’ responses) – with 40 mock crime/lineup sets. A correlation analysis demonstrated weak or non-significant correlations between the mock-witness measures and the algorithms, but the perceptual ratings correlated significantly with both the mock-witness measures and the algorithms. These findings may reflect different task characteristics – pairwise similarity ratings of two faces versus overall similarity ratings for multiple faces – and suggest how to use algorithms in future eyewitness research. The resultant assessments did not correlate with the other families, but a multilevel analysis showed that only the resultant assessments – which are based on actual eyewitness choices – predicted eyewitness performance reliably. Lineup fairness, as measured using actual eyewitnesses, differs from lineup fairness as measured using the three other approaches. 
650 4 |a mock witness 
650 4 |a lineup bias 
650 4 |a lineup size 
650 4 |a lineup fairness 
650 4 |a Filler similarity 
700 1 |a Mansour, Jamal K.  |e VerfasserIn  |0 (orcid)0000-0001-7162-8493  |4 aut 
700 1 |a Penrod, Steven  |e VerfasserIn  |0 (DE-588)1219990167  |0 (DE-627)1736139282  |4 aut 
773 0 8 |i Enthalten in  |t Psychology, crime & law  |d Getzville, NY : HeinOnline, 1994  |g 31(2025), 6, Seite 666-690  |h Online-Ressource  |w (DE-627)341903574  |w (DE-600)2070124-X  |w (DE-576)27234995X  |x 1477-2744  |7 nnas 
773 1 8 |g volume:31  |g year:2025  |g number:6  |g pages:666-690 
856 4 0 |u https://doi.org/10.1080/1068316X.2024.2307358  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4745922124 
LOK |0 003 DE-627 
LOK |0 004 1930397283 
LOK |0 005 20250714043606 
LOK |0 008 250714||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2025-07-13#D1AB6EDADB17EE9754E3728D628EE0B59EF9A53E 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a WA-MARC-krimdoka001.raw