The Long-Term Theft Prediction in Beijing Using Machine Learning Algorithms: Comparison and Interpretation

To advance the interpretability of machine learning for long-term crime prediction in China, we compared the performance of multiple machine learning algorithms in predicting the spatial pattern of theft in Beijing. Gradient boosting decision tree emerged as the algorithm with best predictive accura...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autores principales: Zhang, Yanji (Autor) ; Cai, Liang (Autor) ; Song, Guangwen (Autor) ; Zhu, Chunwu (Autor)
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2025
En: Crime & delinquency
Año: 2025, Volumen: 71, Número: 6/7, Páginas: 2061-2091
Acceso en línea: Volltext (lizenzpflichtig)
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000caa a22000002c 4500
001 1928271162
003 DE-627
005 20250924092127.0
007 cr uuu---uuuuu
008 250616s2025 xx |||||o 00| ||eng c
024 7 |a 10.1177/00111287231180102  |2 doi 
035 |a (DE-627)1928271162 
035 |a (DE-599)KXP1928271162 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Zhang, Yanji  |e VerfasserIn  |4 aut 
109 |a Zhang, Yanji 
245 1 4 |a The Long-Term Theft Prediction in Beijing Using Machine Learning Algorithms: Comparison and Interpretation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a To advance the interpretability of machine learning for long-term crime prediction in China, we compared the performance of multiple machine learning algorithms in predicting the spatial pattern of theft in Beijing. Gradient boosting decision tree emerged as the algorithm with best predictive accuracy. After identifying the importance of criminogenic features, we extended the interpreter SHAP to reveal nonlinear and spatially heterogeneous associations between environmental features and theft and we summarized six relation types of such associations at the global scale. At the local scale, we clustered six area types according to the contribution of environmental attributes to theft prediction in each grid. Policy makers should adopt place-based crime prevention measures based on the specific type of each grid belongs to. 
650 4 |a crime prediction 
650 4 |a gradient boosting decision tree 
650 4 |a interpretable machine learning 
650 4 |a nonlinear relationship 
650 4 |a spatial heterogeneity 
700 1 |a Cai, Liang  |e VerfasserIn  |4 aut 
700 1 |a Song, Guangwen  |e VerfasserIn  |0 (DE-588)1377232972  |0 (DE-627)1936575620  |4 aut 
700 1 |a Zhu, Chunwu  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Crime & delinquency  |d Thousand Oaks, Calif. [u.a.] : Sage Publications, 1960  |g 71(2025), 6/7, Seite 2061-2091  |h Online-Ressource  |w (DE-627)306655128  |w (DE-600)1499997-3  |w (DE-576)081985045  |x 1552-387X  |7 nnas 
773 1 8 |g volume:71  |g year:2025  |g number:6/7  |g pages:2061-2091 
856 4 0 |u https://doi.org/10.1177/00111287231180102  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4734591628 
LOK |0 003 DE-627 
LOK |0 004 1928271162 
LOK |0 005 20250616131623 
LOK |0 008 250616||||||||||||||||ger||||||| 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 866   |x zotak: Nacherfasst, da nicht in zota-Einspielung 
LOK |0 935   |a krzo 
ORI |a WA-MARC-krimdoka001.raw