The Long-Term Theft Prediction in Beijing Using Machine Learning Algorithms: Comparison and Interpretation
To advance the interpretability of machine learning for long-term crime prediction in China, we compared the performance of multiple machine learning algorithms in predicting the spatial pattern of theft in Beijing. Gradient boosting decision tree emerged as the algorithm with best predictive accura...
| Autores principales: | ; ; ; |
|---|---|
| Tipo de documento: | Electrónico Artículo |
| Lenguaje: | Inglés |
| Publicado: |
2025
|
| En: |
Crime & delinquency
Año: 2025, Volumen: 71, Número: 6/7, Páginas: 2061-2091 |
| Acceso en línea: |
Volltext (lizenzpflichtig) |
| Verificar disponibilidad: | HBZ Gateway |
| Palabras clave: |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1928271162 | ||
| 003 | DE-627 | ||
| 005 | 20250924092127.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250616s2025 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1177/00111287231180102 |2 doi | |
| 035 | |a (DE-627)1928271162 | ||
| 035 | |a (DE-599)KXP1928271162 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 2,1 |2 ssgn | ||
| 100 | 1 | |a Zhang, Yanji |e VerfasserIn |4 aut | |
| 109 | |a Zhang, Yanji | ||
| 245 | 1 | 4 | |a The Long-Term Theft Prediction in Beijing Using Machine Learning Algorithms: Comparison and Interpretation |
| 264 | 1 | |c 2025 | |
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 520 | |a To advance the interpretability of machine learning for long-term crime prediction in China, we compared the performance of multiple machine learning algorithms in predicting the spatial pattern of theft in Beijing. Gradient boosting decision tree emerged as the algorithm with best predictive accuracy. After identifying the importance of criminogenic features, we extended the interpreter SHAP to reveal nonlinear and spatially heterogeneous associations between environmental features and theft and we summarized six relation types of such associations at the global scale. At the local scale, we clustered six area types according to the contribution of environmental attributes to theft prediction in each grid. Policy makers should adopt place-based crime prevention measures based on the specific type of each grid belongs to. | ||
| 650 | 4 | |a crime prediction | |
| 650 | 4 | |a gradient boosting decision tree | |
| 650 | 4 | |a interpretable machine learning | |
| 650 | 4 | |a nonlinear relationship | |
| 650 | 4 | |a spatial heterogeneity | |
| 700 | 1 | |a Cai, Liang |e VerfasserIn |4 aut | |
| 700 | 1 | |a Song, Guangwen |e VerfasserIn |0 (DE-588)1377232972 |0 (DE-627)1936575620 |4 aut | |
| 700 | 1 | |a Zhu, Chunwu |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Crime & delinquency |d Thousand Oaks, Calif. [u.a.] : Sage Publications, 1960 |g 71(2025), 6/7, Seite 2061-2091 |h Online-Ressource |w (DE-627)306655128 |w (DE-600)1499997-3 |w (DE-576)081985045 |x 1552-387X |7 nnas |
| 773 | 1 | 8 | |g volume:71 |g year:2025 |g number:6/7 |g pages:2061-2091 |
| 856 | 4 | 0 | |u https://doi.org/10.1177/00111287231180102 |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| ELC | |a 1 | ||
| LOK | |0 000 xxxxxcx a22 zn 4500 | ||
| LOK | |0 001 4734591628 | ||
| LOK | |0 003 DE-627 | ||
| LOK | |0 004 1928271162 | ||
| LOK | |0 005 20250616131623 | ||
| LOK | |0 008 250616||||||||||||||||ger||||||| | ||
| LOK | |0 040 |a DE-2619 |c DE-627 |d DE-2619 | ||
| LOK | |0 092 |o n | ||
| LOK | |0 852 |a DE-2619 | ||
| LOK | |0 852 1 |9 00 | ||
| LOK | |0 866 |x zotak: Nacherfasst, da nicht in zota-Einspielung | ||
| LOK | |0 935 |a krzo | ||
| ORI | |a WA-MARC-krimdoka001.raw | ||
