An Open Source Replication of a Winning Recidivism Prediction Model

We present results of our winning solution to the National Institute of Justice recidivism forecasting challenge. Our team, “MCHawks,” placed highly in both terms of accuracy (as measured via the Brier score), as well as the fairness criteria (weighted by differences in false positive rates between...

Full description

Saved in:  
Bibliographic Details
Main Author: Circo, Giovanni (Author)
Contributors: Wheeler, Andrew P.
Format: Electronic Article
Language:English
Published: 2025
In: International journal of offender therapy and comparative criminology
Year: 2025, Volume: 69, Issue: 5, Pages: 438-453
Online Access: Volltext (lizenzpflichtig)
Journals Online & Print:
Invalid server response. (JOP server down?)
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000naa a22000002c 4500
001 1920046720
003 DE-627
005 20250319054811.0
007 cr uuu---uuuuu
008 250319s2025 xx |||||o 00| ||eng c
024 7 |a 10.1177/0306624X221133004  |2 doi 
035 |a (DE-627)1920046720 
035 |a (DE-599)KXP1920046720 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Circo, Giovanni  |e VerfasserIn  |0 (DE-588)1221227157  |0 (DE-627)1738481751  |4 aut 
109 |a Circo, Giovanni  |a Circo, Giovanni M. 
245 1 0 |a An Open Source Replication of a Winning Recidivism Prediction Model 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We present results of our winning solution to the National Institute of Justice recidivism forecasting challenge. Our team, “MCHawks,” placed highly in both terms of accuracy (as measured via the Brier score), as well as the fairness criteria (weighted by differences in false positive rates between White and Black parolees). We used a non-linear machine learning model, XGBoost, although we detail our search of different model specifications, as many different models’ predictive performance is very similar. Our solution to balancing false positive rates is trivial; we bias predictions to always be “low risk” so false positive rates for each racial group are zero. We discuss changes to the fairness metric to promote non-trivial solutions. By providing open-source replication materials, it is within the capabilities of others to build just as accurate models without extensive statistical expertise or computational resources. 
650 4 |a open-science 
650 4 |a Prediction 
650 4 |a machine-learning 
650 4 |a Recidivism 
700 1 |a Wheeler, Andrew P.  |e VerfasserIn  |0 (DE-588)1170829775  |0 (DE-627)1040128602  |0 (DE-576)512607397  |4 aut 
773 0 8 |i Enthalten in  |t International journal of offender therapy and comparative criminology  |d London [u.a.] : Sage Publ., 1966  |g 69(2025), 5, Seite 438-453  |h Online-Ressource  |w (DE-627)325163286  |w (DE-600)2034467-3  |w (DE-576)094533156  |x 1552-6933  |7 nnas 
773 1 8 |g volume:69  |g year:2025  |g number:5  |g pages:438-453 
856 4 0 |u https://doi.org/10.1177/0306624X221133004  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4688069650 
LOK |0 003 DE-627 
LOK |0 004 1920046720 
LOK |0 005 20250319043606 
LOK |0 008 250319||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2025-03-18#452A751DE58270F6FDDC46DD3DFF2B5F36A717DD 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw