Automatic detection of cyberbullying: racism and sexism on Twitter

With the increasing number of people more people utilising social media platforms, the production of aggressive language online such as attacks, abuse, and denigration increase. However, the constantly changing and different forms of online language provide difficulties in detecting violent language...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Wang, Linfeng (VerfasserIn)
Beteiligte: Islam, Tasmina
Medienart: Druck Aufsatz
Sprache:Englisch
Veröffentlicht: 2023
In: Cybersecurity in the age of smart societies
Jahr: 2023, Seiten: 105-122
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:

MARC

LEADER 00000naa a2200000 c 4500
001 1918680892
003 DE-627
005 20250227091004.0
007 tu
008 250227s2023 xx ||||| 00| ||eng c
020 |a 9783031201592 
035 |a (DE-627)1918680892 
035 |a (DE-599)KXP1918680892 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Wang, Linfeng  |e VerfasserIn  |4 aut 
245 1 0 |a Automatic detection of cyberbullying: racism and sexism on Twitter  |c Linfeng Wang and Tasmina Islam 
264 1 |c 2023 
300 |b Illustrationen 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Literaturverzeichnis: Seite 122 
520 |a With the increasing number of people more people utilising social media platforms, the production of aggressive language online such as attacks, abuse, and denigration increase. However, the constantly changing and different forms of online language provide difficulties in detecting violent language. Not only is this a difficult undertaking, but it is also an area for research and growth, considering the harm caused by cyber violence to children, women, and victims of racial prejudice, as well as the severity of cyberbullying's consequences. This paper identifies some violent terms and proposes a model for detecting racism and sexism on social media (twitter) based on TextCNN and Word2Vec sentiment analysis achieving 96.9% and 98.4% accuracy. 
650 4 |a Cyberbullying detection 
650 4 |a Online social media 
650 4 |a Racism 
650 4 |a Sexism 
650 4 |a Convolutional neural network 
700 1 |a Islam, Tasmina  |e VerfasserIn  |0 (orcid)0000-0002-6437-8251  |4 aut 
773 0 8 |i Enthalten in  |a International Conference on Global Security, Safety and Sustainability (14. : 2022 : Online)  |t Cybersecurity in the age of smart societies  |d Cham : Springer, 2023  |g (2023), Seite 105-122  |h xi, 484 Seiten  |w (DE-627)1880865416  |z 9783031201592  |7 nnam 
773 1 8 |g year:2023  |g pages:105-122 
776 1 |o 10.1007/978-3-031-20160-8_7 
951 |a AR 
ELC |b 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4673919645 
LOK |0 003 DE-627 
LOK |0 004 1918680892 
LOK |0 005 20250227090152 
LOK |0 008 250227||||||||||||||||ger||||||| 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
ORI |a SA-MARC-krimdoka001.raw