A Bayesian Aoristic Logistic Regression to Model Spatio-Temporal Crime Risk Under the Presence of Interval-Censored Event Times
PurposeCrime data analysis has gained significant interest due to its peculiarities. One key characteristic of property crimes is the uncertainty surrounding their exact temporal location, often limited to a time window.MethodsThis study introduces a spatio-temporal logistic regression model that ad...
1. VerfasserIn: | |
---|---|
Medienart: | Elektronisch Aufsatz |
Sprache: | Englisch |
Veröffentlicht: |
2024
|
In: |
Journal of quantitative criminology
Jahr: 2024, Band: 40, Heft: 3, Seiten: 621-644 |
Online-Zugang: |
Volltext (kostenfrei) |
Journals Online & Print: | |
Verfügbarkeit prüfen: | HBZ Gateway |
Schlagwörter: |
MARC
LEADER | 00000caa a22000002c 4500 | ||
---|---|---|---|
001 | 1916836232 | ||
003 | DE-627 | ||
005 | 20250224123616.0 | ||
007 | cr uuu---uuuuu | ||
008 | 250211s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10940-023-09580-1 |2 doi | |
035 | |a (DE-627)1916836232 | ||
035 | |a (DE-599)KXP1916836232 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a 2,1 |2 ssgn | ||
100 | 1 | |a Briz-Redón, Álvaro |e VerfasserIn |0 (DE-588)1357428235 |0 (DE-627)1917903502 |4 aut | |
109 | |a Briz-Redón, Álvaro |a Redón, Álvaro Briz- |a Redon Briz, Alvaro | ||
245 | 1 | 2 | |a A Bayesian Aoristic Logistic Regression to Model Spatio-Temporal Crime Risk Under the Presence of Interval-Censored Event Times |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a PurposeCrime data analysis has gained significant interest due to its peculiarities. One key characteristic of property crimes is the uncertainty surrounding their exact temporal location, often limited to a time window.MethodsThis study introduces a spatio-temporal logistic regression model that addresses the challenges posed by temporal uncertainty in crime data analysis. Inspired by the aoristic method, our Bayesian approach allows for the inclusion of temporal uncertainty in the model.ResultsTo demonstrate the effectiveness of our proposed model, we apply it to both simulated datasets and a dataset of residential burglaries recorded in Valencia, Spain. We compare our proposal with a complete cases model, which excludes temporally-uncertain events, and also with alternative models that rely on imputation procedures. Our model exhibits superior performance in terms of recovering the true underlying crime risk.ConclusionsThe proposed modeling framework effectively handles interval-censored temporal observations while incorporating covariate and space–time effects. This flexible model can be implemented to analyze crime data with uncertainty in temporal locations, providing valuable insights for crime prevention and law enforcement strategies. | ||
650 | 4 | |a Temporal uncertainty | |
650 | 4 | |a Spatio-temporal models | |
650 | 4 | |a Data imputation | |
650 | 4 | |a Crime Data | |
650 | 4 | |a Censored data | |
650 | 4 | |a Bayesian statistics | |
773 | 0 | 8 | |i Enthalten in |t Journal of quantitative criminology |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985 |g 40(2024), 3, Seite 621-644 |h Online-Ressource |w (DE-627)320578003 |w (DE-600)2017241-2 |w (DE-576)104082321 |x 1573-7799 |7 nnas |
773 | 1 | 8 | |g volume:40 |g year:2024 |g number:3 |g pages:621-644 |
856 | |u https://link.springer.com/content/pdf/10.1007/s10940-023-09580-1.pdf |x unpaywall |z Vermutlich kostenfreier Zugang |h publisher [open (via crossref license)] | ||
856 | 4 | 0 | |u https://doi.org/10.1007/s10940-023-09580-1 |x Resolving-System |z kostenfrei |3 Volltext |
935 | |a mkri | ||
951 | |a AR | ||
ELC | |a 1 | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 466305806X | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1916836232 | ||
LOK | |0 005 20250224123616 | ||
LOK | |0 008 250211||||||||||||||||ger||||||| | ||
LOK | |0 035 |a (DE-2619)KrimDok#2025-02-10#B84138CA7489E7370E27D2E6C90ECE7DEA5D48C7 | ||
LOK | |0 040 |a DE-2619 |c DE-627 |d DE-2619 | ||
LOK | |0 092 |o n | ||
LOK | |0 852 |a DE-2619 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a zota | ||
OAS | |a 1 | ||
ORI | |a SA-MARC-krimdoka001.raw |