A Bayesian Aoristic Logistic Regression to Model Spatio-Temporal Crime Risk Under the Presence of Interval-Censored Event Times

PurposeCrime data analysis has gained significant interest due to its peculiarities. One key characteristic of property crimes is the uncertainty surrounding their exact temporal location, often limited to a time window.MethodsThis study introduces a spatio-temporal logistic regression model that ad...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Briz-Redón, Álvaro (VerfasserIn)
Medienart: Elektronisch Aufsatz
Sprache:Englisch
Veröffentlicht: 2024
In: Journal of quantitative criminology
Jahr: 2024, Band: 40, Heft: 3, Seiten: 621-644
Online-Zugang: Volltext (kostenfrei)
Journals Online & Print:
Lade...
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:

MARC

LEADER 00000caa a22000002c 4500
001 1916836232
003 DE-627
005 20250224123616.0
007 cr uuu---uuuuu
008 250211s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10940-023-09580-1  |2 doi 
035 |a (DE-627)1916836232 
035 |a (DE-599)KXP1916836232 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Briz-Redón, Álvaro  |e VerfasserIn  |0 (DE-588)1357428235  |0 (DE-627)1917903502  |4 aut 
109 |a Briz-Redón, Álvaro  |a Redón, Álvaro Briz-  |a Redon Briz, Alvaro 
245 1 2 |a A Bayesian Aoristic Logistic Regression to Model Spatio-Temporal Crime Risk Under the Presence of Interval-Censored Event Times 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a PurposeCrime data analysis has gained significant interest due to its peculiarities. One key characteristic of property crimes is the uncertainty surrounding their exact temporal location, often limited to a time window.MethodsThis study introduces a spatio-temporal logistic regression model that addresses the challenges posed by temporal uncertainty in crime data analysis. Inspired by the aoristic method, our Bayesian approach allows for the inclusion of temporal uncertainty in the model.ResultsTo demonstrate the effectiveness of our proposed model, we apply it to both simulated datasets and a dataset of residential burglaries recorded in Valencia, Spain. We compare our proposal with a complete cases model, which excludes temporally-uncertain events, and also with alternative models that rely on imputation procedures. Our model exhibits superior performance in terms of recovering the true underlying crime risk.ConclusionsThe proposed modeling framework effectively handles interval-censored temporal observations while incorporating covariate and space–time effects. This flexible model can be implemented to analyze crime data with uncertainty in temporal locations, providing valuable insights for crime prevention and law enforcement strategies. 
650 4 |a Temporal uncertainty 
650 4 |a Spatio-temporal models 
650 4 |a Data imputation 
650 4 |a Crime Data 
650 4 |a Censored data 
650 4 |a Bayesian statistics 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 40(2024), 3, Seite 621-644  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:40  |g year:2024  |g number:3  |g pages:621-644 
856 |u https://link.springer.com/content/pdf/10.1007/s10940-023-09580-1.pdf  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h publisher [open (via crossref license)] 
856 4 0 |u https://doi.org/10.1007/s10940-023-09580-1  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 466305806X 
LOK |0 003 DE-627 
LOK |0 004 1916836232 
LOK |0 005 20250224123616 
LOK |0 008 250211||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2025-02-10#B84138CA7489E7370E27D2E6C90ECE7DEA5D48C7 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw