Ngo, F. T., Agarwal, A., & Govindu, R. (2018). Traditional regression methods versus the utility of machine learning techniques in forecasting inmate misconduct in the United States: An exploration of the prospects of the techniques. International journal of criminal justice sciences, 13(2), 420-437. doi:10.5281/zenodo.2657668
Chicago Style (17th ed.) CitationNgo, Fawn T., Anurag Agarwal, and Ramakrishna Govindu. "Traditional Regression Methods Versus the Utility of Machine Learning Techniques in Forecasting Inmate Misconduct in the United States: An Exploration of the Prospects of the Techniques." International Journal of Criminal Justice Sciences 13, no. 2 (2018): 420-437. https://doi.org/10.5281/zenodo.2657668.
MLA (9th ed.) CitationNgo, Fawn T., et al. "Traditional Regression Methods Versus the Utility of Machine Learning Techniques in Forecasting Inmate Misconduct in the United States: An Exploration of the Prospects of the Techniques." International Journal of Criminal Justice Sciences, vol. 13, no. 2, 2018, pp. 420-437, https://doi.org/10.5281/zenodo.2657668.
