Organised crime movement across local communities: A network approach

This paper explores the structure of organised crime movement across local communities and the drivers underpinning such movement. Firstly, it builds on network analysis to offer a novel methodological approach to empirically and quantitatively study the movement of organised crime offenders across...

Full description

Saved in:  
Bibliographic Details
Main Author: Campana, Paolo (Author)
Contributors: Meneghini, Cecilia
Format: Electronic Article
Language:English
Published: 2024
In: Trends in organized crime
Year: 2024, Volume: 27, Issue: 3, Pages: 286-313
Online Access: Volltext (kostenfrei)
Journals Online & Print:
Drawer...
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000caa a22000002 4500
001 1904143431
003 DE-627
005 20241213143655.0
007 cr uuu---uuuuu
008 241002s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s12117-024-09531-7  |2 doi 
035 |a (DE-627)1904143431 
035 |a (DE-599)KXP1904143431 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Campana, Paolo  |e VerfasserIn  |0 (DE-588)1139132717  |0 (DE-627)897304942  |0 (DE-576)346098335  |4 aut 
109 |a Campana, Paolo 
245 1 0 |a Organised crime movement across local communities: A network approach 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a This paper explores the structure of organised crime movement across local communities and the drivers underpinning such movement. Firstly, it builds on network analysis to offer a novel methodological approach to empirically and quantitatively study the movement of organised crime offenders across geographical areas. The paper then applies this approach to evidence from Cambridgeshire in the United Kingdom. It reconstructs the movement of organised crime members across local areas based on a large-scale police dataset that includes 41 months of recorded crime events. It identifies organised crime “turf” and “target” areas and then explores the drivers of movement from the former to the latter using Exponential Random Graph Models. Findings confirm that geographical distance matters; however, socio-demographic, urban, economic and crime-related characteristics of communities play a key role. Organised crime group members target urban communities with higher than average illegal market opportunities (proxied by drug-related activity). The work also finds the effect of socio-demographic homophily between turf and target communities, suggesting that organised crime group members might target territories that are similar to their own. While a high level of deprivation makes a community more likely to send organised crime members, its impact on a community’s probability of being a receiver is less clear. Finally, the paper offers a way to identify communities (local areas) at risk of being targeted by criminal organisations, thus providing practitioners with a tool for early interventions. 
650 4 |a Community-based networks 
650 4 |a Social Network Analysis 
650 4 |a Mobility 
650 4 |a Organised Crime 
700 1 |a Meneghini, Cecilia  |e VerfasserIn  |0 (DE-588)1313963585  |0 (DE-627)187633570X  |4 aut 
773 0 8 |i Enthalten in  |t Trends in organized crime  |d Getzville, NY : HeinOnline, 1995  |g 27(2024), 3, Seite 286-313  |h Online-Ressource  |w (DE-627)32051806X  |w (DE-600)2014206-7  |w (DE-576)098304852  |x 1936-4830  |7 nnns 
773 1 8 |g volume:27  |g year:2024  |g number:3  |g pages:286-313 
856 |u https://link.springer.com/content/pdf/10.1007/s12117-024-09531-7.pdf  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h publisher [open (via crossref license)] 
856 4 0 |u https://doi.org/10.1007/s12117-024-09531-7  |x Resolving-System  |z kostenfrei  |3 Volltext 
912 |a NOMM 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4585898506 
LOK |0 003 DE-627 
LOK |0 004 1904143431 
LOK |0 005 20241002043605 
LOK |0 008 241002||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2024-10-01#E8A8A406E29F2BB43430EA3F5D51707F0DAA8032 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
OAS |a 1 
ORI |a WA-MARC-krimdoka001.raw