Software Tool and Methodology for Enhancement of Unidentified Decedent Systems With Post-Mortem Automatic Iris Recognition, New York, 2019-2021

<p>The research team sought to create a methodology and software that allows for identification of deceased individuals based on iris patterns, with computer- and human-driven components. Using a dataset of post-mortem and peri-mortem iris images (acquired in near infrared and visible light) r...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Czajka, Adam (Autor)
Otros Autores: Bowyer, Kevin W. (Contribuidor) ; Chute, Dennis J. (Contribuidor) ; Flynn, Patrick J. (Contribuidor) ; Ross, Arun (Contribuidor)
Tipo de documento: Electrónico Research Data
Lenguaje:Inglés
Publicado: [Erscheinungsort nicht ermittelbar] [Verlag nicht ermittelbar] 2023
En:Año: 2023
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000cam a22000002c 4500
001 1902794966
003 DE-627
005 20250111055050.0
007 cr uuu---uuuuu
008 240918s2023 xx |||||o 00| ||eng c
024 7 |a 10.3886/ICPSR38259.v1  |2 doi 
035 |a (DE-627)1902794966 
035 |a (DE-599)KXP1902794966 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Czajka, Adam  |e VerfasserIn  |4 aut 
245 1 0 |a Software Tool and Methodology for Enhancement of Unidentified Decedent Systems With Post-Mortem Automatic Iris Recognition, New York, 2019-2021 
264 1 |a [Erscheinungsort nicht ermittelbar]  |b [Verlag nicht ermittelbar]  |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a <p>The research team sought to create a methodology and software that allows for identification of deceased individuals based on iris patterns, with computer- and human-driven components. Using a dataset of post-mortem and peri-mortem iris images (acquired in near infrared and visible light) representing 259 cases, the research team engineered a software package, PMExpert, that incorporated three post-mortem specific iris matching algorithms. To understand what features humans believe to be useful in post-mortem iris matching, participants analyzed pairs of post-mortem samples, classified them as those originating from the same or different eyes, and annotated features supporting the decision.</p> <p><strong>Iris Images:</strong></p> <p>After the curation of all data collected by the Dutchess County Medical Examiner's Office, NY, iris images from 259 cases were selected for the final dataset release, and for analyses carried out in this project. This data corpus consists of 5,770 NIR and 4,643 RGB images, including images for one peri-mortem case with corresponding post-mortem samples after demise.</p> <p><strong>Human Examination Data:</strong></p> <p>The researchers conducted an experiment to collect annotation data on what humans believe to be distinctive features useful for post-mortem iris matching. Initial participants were recruited through the University of Notre Dame to complete study tasks in-person on-site. Due to the COVID-19 pandemic, the study design was later modified to be an online experiment recruiting participants through Amazon Mechanical Turk.</p> <p>This data acquisition took place in two rounds:</p> <ol> <li>The first round was the initial collection of annotation data wherein participants had no prior knowledge of the task or previous decisions.</li> <li>The second round, called the verification step, is where the annotations collected in the first round were presented to future participants for them to either agree with or disagree with along with supporting annotations.</li></ol> <p><strong>Software Package:</strong></p> <p>A software tool called PMExpert was created to provide a simple unified interface for all recognition methods, allowing them to be used in an operational setting.</p> <p>PMExpert consists of two main components: a command line interface (CLI) and a graphical user interface (GUI). Both components are meant to allow examiners to use post-mortem iris recognition methods on images that are collected in their routine operations, offering not only similarity scores and decisions, but also additional information to equip examiners to make their final decision.</p> 
540 |a ICPSR Terms of Use 
650 4 |a biomeasures 
650 4 |a forensic sciences 
655 7 |a Forschungsdaten  |0 (DE-588)1098579690  |0 (DE-627)857755366  |0 (DE-576)469182156  |2 gnd-content 
700 1 |a Bowyer, Kevin W.  |e MitwirkendeR  |4 ctb 
700 1 |a Chute, Dennis J.  |e MitwirkendeR  |4 ctb 
700 1 |a Flynn, Patrick J.  |e MitwirkendeR  |4 ctb 
700 1 |a Ross, Arun  |e MitwirkendeR  |4 ctb 
856 4 0 |u https://doi.org/10.3886/ICPSR38259.v1  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4581186404 
LOK |0 003 DE-627 
LOK |0 004 1902794966 
LOK |0 005 20240918043624 
LOK |0 008 240918||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)ICPSR38259 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a foda  |a nacj 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw