The Relative Incident Rate Ratio Effect Size for Count-Based Impact Evaluations: When an Odds Ratio is Not an Odds Ratio

Area-based prevention studies often produce results that can be represented in a 2-by-2 table of counts. For example, a table may show the crime counts during a 12-month period prior to the intervention compared to a 12-month period during the intervention for a treatment and control area or areas....

Full description

Saved in:  
Bibliographic Details
Main Author: Wilson, David B. (Author)
Format: Electronic Article
Language:English
Published: 2022
In: Journal of quantitative criminology
Year: 2022, Volume: 38, Issue: 2, Pages: 323-341
Online Access: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000caa a22000002c 4500
001 1884549020
003 DE-627
005 20250112055021.0
007 cr uuu---uuuuu
008 240328s2022 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10940-021-09494-w  |2 doi 
035 |a (DE-627)1884549020 
035 |a (DE-599)KXP1884549020 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Wilson, David B.  |e VerfasserIn  |4 aut 
245 1 4 |a The Relative Incident Rate Ratio Effect Size for Count-Based Impact Evaluations: When an Odds Ratio is Not an Odds Ratio 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Area-based prevention studies often produce results that can be represented in a 2-by-2 table of counts. For example, a table may show the crime counts during a 12-month period prior to the intervention compared to a 12-month period during the intervention for a treatment and control area or areas. Studies of this type have used either Cohen’s d or the odds ratio as an effect size index. The former is unsuitable and the latter is a misnomer when used on data of this type. Based on the quasi-Poisson regression model, an incident rate ratio and relative incident rate ratio effect size and associated overdispersion parameter are developed and advocated as the preferred effect size for count-based outcomes in impact evaluations and meta-analyses of such studies. 
650 4 |a odds ratio 
650 4 |a Cohen’s d 
650 4 |a Meta-analysis 
650 4 |a Counts 
650 4 |a Poisson 
650 4 |a Incident rate ratio 
650 4 |a effect size 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 38(2022), 2, Seite 323-341  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:38  |g year:2022  |g number:2  |g pages:323-341 
856 4 0 |u https://doi.org/10.1007/s10940-021-09494-w  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-021-09494-w  |x Verlag  |z lizenzpflichtig  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4505072134 
LOK |0 003 DE-627 
LOK |0 004 1884549020 
LOK |0 005 20240328043607 
LOK |0 008 240328||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2024-03-20#B7145E52D5FBFBA1654E1028AFA43ADDE0854875 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota  |a tiep 
ORI |a SA-MARC-krimdoka001.raw