Typology of Cybercrime Victimization in Europe: A Multilevel Latent Class Analysis
The present study reveals hidden patterns of group membership across cybercrime victims in European countries. We used a multilevel latent class analysis of data from the 2019 Eurobarometer, a regionally representative sample of 21,908 individuals from 28 countries, to identify such subgroups and pa...
Autor principal: | |
---|---|
Otros Autores: | |
Tipo de documento: | Electrónico Artículo |
Lenguaje: | Inglés |
Publicado: |
2024
|
En: |
Crime & delinquency
Año: 2024, Volumen: 70, Número: 4, Páginas: 1196-1223 |
Acceso en línea: |
Volltext (lizenzpflichtig) |
Journals Online & Print: | |
Verificar disponibilidad: | HBZ Gateway |
Palabras clave: |
MARC
LEADER | 00000naa a22000002c 4500 | ||
---|---|---|---|
001 | 1883155215 | ||
003 | DE-627 | ||
005 | 20240312101316.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240312s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1177/00111287221118880 |2 doi | |
035 | |a (DE-627)1883155215 | ||
035 | |a (DE-599)KXP1883155215 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a 2,1 |2 ssgn | ||
100 | 1 | |a Lee, Claire Seungeun |e VerfasserIn |0 (DE-588)1175642738 |0 (DE-627)1046914812 |0 (DE-576)516367633 |4 aut | |
109 | |a Lee, Claire Seungeun |a Lee, Claire |a Seungeun Lee, Claire | ||
245 | 1 | 0 | |a Typology of Cybercrime Victimization in Europe: A Multilevel Latent Class Analysis |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The present study reveals hidden patterns of group membership across cybercrime victims in European countries. We used a multilevel latent class analysis of data from the 2019 Eurobarometer, a regionally representative sample of 21,908 individuals from 28 countries, to identify such subgroups and patterns of cybercrime victimization. The findings suggest there are two overarching cybercrime victim profiles in Europe based on individuals? levels of ?online activity? and ?cybersecurity guardianship?: the ?at-risk class? (19%, higher risk) and the ?cautious class? (81%, lower risk). Ten different types of cybercrime victimization were compared, and while individual-level predictors were primarily used to produce different groups of cybercrime victims, our findings suggest that researchers consider both individual- and country-level predictors to understand cybercrime victimization patterns in greater depth. | ||
650 | 4 | |a Europe | |
650 | 4 | |a cybercrime victimization | |
650 | 4 | |a multilevel latent class analysis | |
650 | 4 | |a Routine Activities Theory | |
700 | 1 | |a Wang, Yan |e VerfasserIn |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Crime & delinquency |d Thousand Oaks, Calif. [u.a.] : Sage Publications, 1960 |g 70(2024), 4, Seite 1196-1223 |h Online-Ressource |w (DE-627)306655128 |w (DE-600)1499997-3 |w (DE-576)081985045 |x 1552-387X |7 nnas |
773 | 1 | 8 | |g volume:70 |g year:2024 |g number:4 |g pages:1196-1223 |
856 | 4 | 0 | |u https://doi.org/10.1177/00111287221118880 |x Resolving-System |z lizenzpflichtig |3 Volltext |
951 | |a AR | ||
ELC | |a 1 | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 4499306620 | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1883155215 | ||
LOK | |0 005 20240312101316 | ||
LOK | |0 008 240312||||||||||||||||ger||||||| | ||
LOK | |0 040 |a DE-21-110 |c DE-627 |d DE-21-110 | ||
LOK | |0 092 |o n | ||
LOK | |0 852 |a DE-21-110 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a krzo | ||
ORI | |a SA-MARC-krimdoka001.raw |