Tweets used to study reports of food fraud related to fish products 2018

Data collected from Twitter social media platform (8 June 2018 - 22 June 2018) to study reports of food fraud related to fish products on social media from posts originating in the UK. The dataset contains Tweet IDs and keywords used to search for Tweets using a programatic access via the public Twi...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Edwards, Peter (Autor)
Otros Autores: Markovic, Milan ; Petrunova, Nikol ; Chenghua, Lin ; Corsar, David
Tipo de documento: Electrónico Research Data
Lenguaje:Inglés
Publicado: Colchester UK Data Service 2018
En:Año: 2018
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000nam a22000002c 4500
001 1878524615
003 DE-627
005 20240119135503.0
007 cr uuu---uuuuu
008 240119s2018 xx |||||o 00| ||eng c
024 7 |a 10.5255/UKDA-SN-853378  |2 doi 
024 8 |a 853378  |q SN 
035 |a (DE-627)1878524615 
035 |a (DE-599)KXP1878524615 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Edwards, Peter  |e VerfasserIn  |4 aut 
245 1 0 |a Tweets used to study reports of food fraud related to fish products 2018  |c Edwards, P., University of Aberdeen, Markovic, M., University of Aberdeen, Petrunova, N., University of Aberdeen, Chenghua, L., University of Aberdeen, Corsar, D., University of Aberdeen 
264 1 |a Colchester  |b UK Data Service  |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Data collected from Twitter social media platform (8 June 2018 - 22 June 2018) to study reports of food fraud related to fish products on social media from posts originating in the UK. The dataset contains Tweet IDs and keywords used to search for Tweets using a programatic access via the public Twitter API. Keywords used in this search were generated using a machine learning tool and consisted of combinations of keywords describing terms related to fish and fake. Social media and other forms of online content have enormous potential as a way to understand people's opinions and attitudes, and as a means to observe emerging phenomena - such as disease outbreaks. How might policy makers use such new forms of data to better assess existing policies and help formulate new ones? This one year demonstrator project is a partnership between computer science academics at the University of Aberdeen and officers from Food Standards Scotland which aims to answer this question. Food Standards Scotland is the public-sector food body for Scotland created by the Food (Scotland) Act 2015. It regularly provides policy guidance to ministers in areas such as food hygiene monitoring and reporting, food-related health risks, and food fraud. The project will develop a software tool (the Food Sentiment Observatory) that will be used to explore the role of data from sources such as Twitter, Facebook, and TripAdvisor in three policy areas selected by Food Standards Scotland: - attitudes to the differing food hygiene information systems used in Scotland and the other UK nations; - study of an historical E.coli outbreak to understand effectiveness of monitoring and decision making protocols; - understanding the potential role of social media data in responding to new and emerging forms of food fraud. The Observatory will integrate a number of existing software tools (developed in our recent research) to allow us to mine large volumes of data to identify important textual signals, extract opinions held by individuals or groups, and crucially, to document these data processing operations - to aid transparency of policy decision-making. Given the amount of noise appearing in user-generated online content (such as fake restaurant reviews) it is our intention to investigate methods to extract meaningful and reliable knowledge, to better support policy making. 
650 4 |a Social Media 
650 4 |a Policy Making 
650 4 |a fish (as food) 
655 7 |a Forschungsdaten  |0 (DE-588)1098579690  |0 (DE-627)857755366  |0 (DE-576)469182156  |2 gnd-content 
700 1 |a Markovic, Milan  |e VerfasserIn  |4 aut 
700 1 |a Petrunova, Nikol  |e VerfasserIn  |4 aut 
700 1 |a Chenghua, Lin  |e VerfasserIn  |4 aut 
700 1 |a Corsar, David  |e VerfasserIn  |4 aut 
856 4 0 |u https://doi.org/10.5255/UKDA-SN-853378  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4462883373 
LOK |0 003 DE-627 
LOK |0 004 1878524615 
LOK |0 005 20240119135323 
LOK |0 008 240119||||||||||||||||ger||||||| 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a foda 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw