Forecasting Crime with Deep Learning

The objective of this work is to take advantage of deep neural networks in order to make next day crime count predictions in a fine-grain city partition. We make predictions using Chicago and Portland crime data, which is augmented with additional datasets covering weather, census data, and public t...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Klabjan, Diego (Autor)
Otros Autores: Stec, Alexander
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2018
En:Año: 2018
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000cam a22000002c 4500
001 1866624237
003 DE-627
005 20250114054923.0
007 cr uuu---uuuuu
008 231020s2018 xx |||||o 00| ||eng c
035 |a (DE-627)1866624237 
035 |a (DE-599)KXP1866624237 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Klabjan, Diego  |e VerfasserIn  |4 aut 
245 1 0 |a Forecasting Crime with Deep Learning 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The objective of this work is to take advantage of deep neural networks in order to make next day crime count predictions in a fine-grain city partition. We make predictions using Chicago and Portland crime data, which is augmented with additional datasets covering weather, census data, and public transportation. The crime counts are broken into 10 bins and our model predicts the most likely bin for a each spatial region at a daily level. We train this data using increasingly complex neural network structures, including variations that are suited to the spatial and temporal aspects of the crime prediction problem. With our best model we are able to predict the correct bin for overall crime count with 75.6% and 65.3% accuracy for Chicago and Portland, respectively. The results show the efficacy of neural networks for the prediction problem and the value of using external datasets in addition to standard crime data 
650 4 |a slides 
700 1 |a Stec, Alexander  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/1806.01486  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4394260825 
LOK |0 003 DE-627 
LOK |0 004 1866624237 
LOK |0 005 20231020043734 
LOK |0 008 231020||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE51508030 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw