Big Social Data and GIS: Visualize Predictive Crime

Social media is a desirable Big Data source used to examine the relationship between crime and social behavior. Observation of this connection is enriched within a geographic information system (GIS) rooted in environmental criminology theory, and produces several different results to substantiate s...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
VerfasserInnen: Alsudais, Kareem (VerfasserIn) ; Hilton, Brian (VerfasserIn) ; Corso, Anthony (VerfasserIn)
Medienart: Elektronisch Buch
Sprache:Englisch
Veröffentlicht: 2016
In:Jahr: 2016
Online-Zugang: Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866622307
003 DE-627
005 20250115054922.0
007 cr uuu---uuuuu
008 231020s2016 xx |||||o 00| ||eng c
035 |a (DE-627)1866622307 
035 |a (DE-599)KXP1866622307 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Alsudais, Kareem  |e VerfasserIn  |4 aut 
245 1 0 |a Big Social Data and GIS: Visualize Predictive Crime 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Social media is a desirable Big Data source used to examine the relationship between crime and social behavior. Observation of this connection is enriched within a geographic information system (GIS) rooted in environmental criminology theory, and produces several different results to substantiate such a claim. This paper presents the construction and implementation of a GIS artifact producing visualization and statistical outcomes to develop evidence that supports predictive crime analysis. An information system research prototype guides inquiry and uses crime as the dependent variable and a social media tweet corpus, operationalized via natural language processing, as the independent variable. This inescapable realization of social media as a predictive crime variable is prudent; researchers and practitioners will better appreciate its capability. Inclusive visual and statistical results are novel, represent state-of-the-art predictive analysis, increase the baseline R2 value by 7.26%, and support future predictive crime-based research when front-run with real-time social media 
700 1 |a Hilton, Brian  |e VerfasserIn  |4 aut 
700 1 |a Corso, Anthony  |e VerfasserIn  |4 aut 
856 4 0 |u https://core.ac.uk/download/301368739.pdf  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4394258898 
LOK |0 003 DE-627 
LOK |0 004 1866622307 
LOK |0 005 20231020043730 
LOK |0 008 231020||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE17804500 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw