Self-exciting spatio-temporal statistical models for count data with applications to modeling the spread of violence

In this dissertation we provide statistical models and inferential techniques for analyzing the number of violent or criminal events as they evolve over space and time. Our research focuses on a class of models we refer to as self-exciting spatio-temporal models. These are a class of parametric mode...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Clark, Nicholas John (Autor)
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2018
En:Año: 2018
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway

MARC

LEADER 00000nam a22000002 4500
001 1866618423
003 DE-627
005 20231020043724.0
007 cr uuu---uuuuu
008 231020s2018 xx |||||o 00| ||eng c
035 |a (DE-627)1866618423 
035 |a (DE-599)KXP1866618423 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Clark, Nicholas John  |e VerfasserIn  |4 aut 
245 1 0 |a Self-exciting spatio-temporal statistical models for count data with applications to modeling the spread of violence 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a In this dissertation we provide statistical models and inferential techniques for analyzing the number of violent or criminal events as they evolve over space and time. Our research focuses on a class of models we refer to as self-exciting spatio-temporal models. These are a class of parametric models that allow for dependence in a latent structure as well as dependence in the data model combining what is sometimes referred to as observation driven and parameter driven models. This class of models arise from straight-forward assumptions on how violence or crime evolves over space and time and has use in the statistical modeling of situations where there is an expected repeat or near-repeat victimization. In Chapter 2 we present the spatially correlated self-exciting model and the reaction-diffusion self-exciting model to analyze the number of violent events in different regions in Iraq. We also demonstrate how Laplace approximations can be used to conduct efficient Bayesian inference. We further show how the choice of the latent structure matters in this problem. In Chapter 3 we generalize the spatially correlated self-exciting model and show how it extends the classic integer generalized auto-regressive conditionally heteroskedastic, or INGARCH, model to account for spatial correlation and improves the second order properties of the INGARCH model. We refer to this new class of models as the spatially correlated INGARCH, or SPINGARCH, model. We show how the spatially correlated self-exciting model is similar to the SPINGARCH(0,1) model. Finally in Chapter 4 we present a fast extended Laplace approximation algorithm for fitting the SPINGARCH(0,1) model demonstrating empirically how the extended Laplace approximation method reduces a bias that exists in the Laplace approximation method while performing much quicker than Markov Chain Monte Carlo approaches 
856 4 0 |u https://core.ac.uk/download/212821399.pdf  |x Verlag  |z kostenfrei  |3 Volltext 
912 |a NOMM 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4394255015 
LOK |0 003 DE-627 
LOK |0 004 1866618423 
LOK |0 005 20231020043724 
LOK |0 008 231020||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE61679096 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw