Crime Topic Modeling

The classification of crime into discrete categories entails a massive loss of information. Crimes emerge out of a complex mix of behaviors and situations, yet most of these details cannot be captured by singular crime type labels. This information loss impacts our ability to not only understand the...

Full description

Saved in:  
Bibliographic Details
Authors: Bertozzi, Andrea L. 1965- (Author) ; Kuang, Da (Author) ; Brantingham, P. Jeffrey (Author)
Format: Electronic Article
Language:English
Published: 2017
In: Crime Science
Year: 2017
Online Access: Volltext (kostenfrei)
Volltext (kostenfrei)
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000caa a22000002c 4500
001 186659799X
003 DE-627
005 20250115054918.0
007 cr uuu---uuuuu
008 231020s2017 xx |||||o 00| ||eng c
024 7 |a 10.1186/s40163-017-0074-0  |2 doi 
035 |a (DE-627)186659799X 
035 |a (DE-599)KXP186659799X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |8 1\p  |a Bertozzi, Andrea L.  |d 1965-  |e VerfasserIn  |0 (DE-588)1266573216  |0 (DE-627)1815344598  |4 aut 
109 |a Bertozzi, Andrea L. 1965-  |a Bertozzi, Andrea Louise 1965-  |a Bertozzi, A. L. 1965- 
245 1 0 |a Crime Topic Modeling 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The classification of crime into discrete categories entails a massive loss of information. Crimes emerge out of a complex mix of behaviors and situations, yet most of these details cannot be captured by singular crime type labels. This information loss impacts our ability to not only understand the causes of crime, but also how to develop optimal crime prevention strategies. We apply machine learning methods to short narrative text descriptions accompanying crime records with the goal of discovering ecologically more meaningful latent crime classes. We term these latent classes "crime topics" in reference to text-based topic modeling methods that produce them. We use topic distributions to measure clustering among formally recognized crime types. Crime topics replicate broad distinctions between violent and property crime, but also reveal nuances linked to target characteristics, situational conditions and the tools and methods of attack. Formal crime types are not discrete in topic space. Rather, crime types are distributed across a range of crime topics. Similarly, individual crime topics are distributed across a range of formal crime types. Key ecological groups include identity theft, shoplifting, burglary and theft, car crimes and vandalism, criminal threats and confidence crimes, and violent crimes. Though not a replacement for formal legal crime classifications, crime topics provide a unique window into the heterogeneous causal processes underlying crime.Comment: 47 pages, 4 tables, 7 figure 
650 4 |a slides 
700 1 |a Kuang, Da  |e VerfasserIn  |4 aut 
700 1 |a Brantingham, P. Jeffrey  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Crime Science  |d Heidelberg : Springer, 2012  |g (2017)  |h Online-Ressource  |w (DE-627)815913915  |w (DE-600)2806589-X  |w (DE-576)425059588  |x 2193-7680  |7 nnas 
773 1 8 |g year:2017 
856 4 0 |u http://arxiv.org/abs/1701.01505  |x Verlag  |z kostenfrei  |3 Volltext  |7 0 
856 4 0 |u https://doi.org/10.1186/s40163-017-0074-0  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4394234581 
LOK |0 003 DE-627 
LOK |0 004 186659799X 
LOK |0 005 20231020043650 
LOK |0 008 231020||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE37716224 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
LOK |0 939   |a 20-10-23  |b l01 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw