Improving Crime Count Forecasts Using Twitter and Taxi Data

Crime prediction is crucial to criminal justice decision makers and efforts to prevent crime. The paper evaluates the explanatory and predictive value of human activity patterns derived from taxi trip, Twitter and Foursquare data. Analysis of a six-month period of crime data for New York City shows...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Härdle, Wolfgang Karl (Autor)
Otros Autores: Vomfell, Lara ; Lessmann, Stefan
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2020
En:Año: 2020
Acceso en línea: Volltext (kostenfrei)
Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866589210
003 DE-627
005 20250113054910.0
007 cr uuu---uuuuu
008 231020s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.dss.2018.07.003  |2 doi 
035 |a (DE-627)1866589210 
035 |a (DE-599)KXP1866589210 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Härdle, Wolfgang Karl  |e VerfasserIn  |4 aut 
245 1 0 |a Improving Crime Count Forecasts Using Twitter and Taxi Data 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Crime prediction is crucial to criminal justice decision makers and efforts to prevent crime. The paper evaluates the explanatory and predictive value of human activity patterns derived from taxi trip, Twitter and Foursquare data. Analysis of a six-month period of crime data for New York City shows that these data sources improve predictive accuracy for property crime by 19% compared to using only demographic data. This effect is strongest when the novel features are used together, yielding new insights into crime prediction. Notably and in line with social disorganization theory, the novel features cannot improve predictions for violent crimes 
700 1 |a Vomfell, Lara  |e VerfasserIn  |4 aut 
700 1 |a Lessmann, Stefan  |e VerfasserIn  |4 aut 
856 |u https://arxiv.org/pdf/2009.03703  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h repository [oa repository (via OAI-PMH doi match)] 
856 4 0 |u http://arxiv.org/abs/2009.03703  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://doi.org/10.1016/j.dss.2018.07.003  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4394225809 
LOK |0 003 DE-627 
LOK |0 004 1866589210 
LOK |0 005 20231020043637 
LOK |0 008 231020||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE88806406 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw