Improving Crime Count Forecasts Using Twitter and Taxi Data

Crime prediction is crucial to criminal justice decision makers and efforts to prevent crime. The paper evaluates the explanatory and predictive value of human activity patterns derived from taxi trip, Twitter and Foursquare data. Analysis of a six-month period of crime data for New York City shows...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Härdle, Wolfgang Karl (VerfasserIn)
Beteiligte: Vomfell, Lara ; Lessmann, Stefan
Medienart: Elektronisch Buch
Sprache:Englisch
Veröffentlicht: 2020
In:Jahr: 2020
Online-Zugang: Volltext (kostenfrei)
Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway
Beschreibung
Zusammenfassung:Crime prediction is crucial to criminal justice decision makers and efforts to prevent crime. The paper evaluates the explanatory and predictive value of human activity patterns derived from taxi trip, Twitter and Foursquare data. Analysis of a six-month period of crime data for New York City shows that these data sources improve predictive accuracy for property crime by 19% compared to using only demographic data. This effect is strongest when the novel features are used together, yielding new insights into crime prediction. Notably and in line with social disorganization theory, the novel features cannot improve predictions for violent crimes
DOI:10.1016/j.dss.2018.07.003