Link Prediction in Criminal Networks: A Tool for Criminal Intelligence Analysis

The problem of link prediction has recently received increasing attention from scholars in network science. In social network analysis, one of its aims is to recover missing links, namely connections among actors which are likely to exist but have not been reported because data are incomplete or sub...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Berlusconi, Giulia (VerfasserIn)
Beteiligte: Verani, Marco ; Piccardi, Carlo ; Parolini, Nicola ; Calderoni, Francesco (ORCID:0000-0003-2979-4599)
Medienart: Elektronisch Aufsatz
Sprache:Englisch
Veröffentlicht: 2016
In: PLOS ONE
Jahr: 2016
Online-Zugang: Volltext (kostenfrei)
Volltext (kostenfrei)
Journals Online & Print:
Lade...
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:

MARC

LEADER 00000caa a22000002c 4500
001 1866583107
003 DE-627
005 20250115054915.0
007 cr uuu---uuuuu
008 231020s2016 xx |||||o 00| ||eng c
024 7 |a 10.1371/journal.pone.0154244  |2 doi 
035 |a (DE-627)1866583107 
035 |a (DE-599)KXP1866583107 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Berlusconi, Giulia  |e VerfasserIn  |4 aut 
109 |a Berlusconi, Giulia 
245 1 0 |a Link Prediction in Criminal Networks: A Tool for Criminal Intelligence Analysis 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The problem of link prediction has recently received increasing attention from scholars in network science. In social network analysis, one of its aims is to recover missing links, namely connections among actors which are likely to exist but have not been reported because data are incomplete or subject to various types of uncertainty. In the field of criminal investigations, problems of incomplete information are encountered almost by definition, given the obvious anti-detection strategies set up by criminals and the limited investigative resources. In this paper, we work on a specific dataset obtained from a real investigation, and we propose a strategy to identify missing links in a criminal network on the basis of the topological analysis of the links classified as marginal, i.e. removed during the investigation procedure. The main assumption is that missing links should have opposite features with respect to marginal ones. Measures of node similarity turn out to provide the best characterization in this sense. The inspection of the judicial source documents confirms that the predicted links, in most instances, do relate actors with large likelihood of co-participation in illicit activitie 
650 4 |a Medicine 
700 1 |a Verani, Marco  |e VerfasserIn  |4 aut 
700 1 |a Piccardi, Carlo  |e VerfasserIn  |4 aut 
700 1 |a Parolini, Nicola  |e VerfasserIn  |4 aut 
700 1 |a Calderoni, Francesco (ORCID:0000-0003-2979-4599)  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t PLOS ONE  |d San Francisco, California, US : PLOS, 2006  |g (2016)  |h Online-Ressource  |w (DE-627)523574592  |w (DE-600)2267670-3  |w (DE-576)281331979  |x 1932-6203  |7 nnas 
773 1 8 |g year:2016 
856 |u https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0154244&type=printable  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h publisher [oa journal (via doaj)] 
856 4 0 |u https://core.ac.uk/download/79154637.pdf  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://doi.org/10.1371/journal.pone.0154244  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4394219698 
LOK |0 003 DE-627 
LOK |0 004 1866583107 
LOK |0 005 20231020043629 
LOK |0 008 231020||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE39382924 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw