Scalable model selection for spatial additive mixed modeling: application to crime analysis

A rapid growth in spatial open datasets has led to a huge demand for regression approaches accommodating spatial and non-spatial effects in big data. Regression model selection is particularly important to stably estimate flexible regression models. However, conventional methods can be slow for larg...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Kajita, Mami (Autor)
Otros Autores: Murakami, Daisuke ; Kajita, Seiji
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2020
En:Año: 2020
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866346075
003 DE-627
005 20250113054909.0
007 cr uuu---uuuuu
008 231019s2020 xx |||||o 00| ||eng c
035 |a (DE-627)1866346075 
035 |a (DE-599)KXP1866346075 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Kajita, Mami  |e VerfasserIn  |4 aut 
245 1 0 |a Scalable model selection for spatial additive mixed modeling: application to crime analysis 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a A rapid growth in spatial open datasets has led to a huge demand for regression approaches accommodating spatial and non-spatial effects in big data. Regression model selection is particularly important to stably estimate flexible regression models. However, conventional methods can be slow for large samples. Hence, we develop a fast and practical model-selection approach for spatial regression models, focusing on the selection of coefficient types that include constant, spatially varying, and non-spatially varying coefficients. A pre-processing approach, which replaces data matrices with small inner products through dimension reduction dramatically accelerates the computation speed of model selection. Numerical experiments show that our approach selects the model accurately and computationally efficiently, highlighting the importance of model selection in the spatial regression context. Then, the present approach is applied to open data to investigate local factors affecting crime in Japan. The results suggest that our approach is useful not only for selecting factors influencing crime risk but also for predicting crime events. This scalable model selection will be key to appropriately specifying flexible and large-scale spatial regression models in the era of big data. The developed model selection approach was implemented in the R package spmoran 
700 1 |a Murakami, Daisuke  |e VerfasserIn  |4 aut 
700 1 |a Kajita, Seiji  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/2008.03551  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4392991806 
LOK |0 003 DE-627 
LOK |0 004 1866346075 
LOK |0 005 20231019043731 
LOK |0 008 231019||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE87049629 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw