Crime Prediction Using Multiple-ANFIS Architecture and Spatiotemporal Data

Statistical values alone cannot bring the whole scenario of crime occurrences in the city of Dhaka. We need a better way to use these statistical values to predict crime occurrences and make the city a safer place to live. Proper decision-making for the future is key in reducing the rate of criminal...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Hossain, Sadat (Autor)
Otros Autores: Roy, Kalyan ; Rahman, M. Rashedur ; Mahmood, Saif ; Karim, Redwanul ; Islam, Mashnoon
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2020
En:Año: 2020
Acceso en línea: Volltext (kostenfrei)
Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866343270
003 DE-627
005 20250113054908.0
007 cr uuu---uuuuu
008 231019s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/is.2018.8710564  |2 doi 
035 |a (DE-627)1866343270 
035 |a (DE-599)KXP1866343270 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Hossain, Sadat  |e VerfasserIn  |4 aut 
245 1 0 |a Crime Prediction Using Multiple-ANFIS Architecture and Spatiotemporal Data 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Statistical values alone cannot bring the whole scenario of crime occurrences in the city of Dhaka. We need a better way to use these statistical values to predict crime occurrences and make the city a safer place to live. Proper decision-making for the future is key in reducing the rate of criminal offenses in an area or a city. If the law enforcement bodies can allocate their resources efficiently for the future, the rate of crime in Dhaka can be brought down to a minimum. In this work, we have made an initiative to provide an effective tool with which law enforcement officials and detectives can predict crime occurrences ahead of time and take better decisions easily and quickly. We have used several Fuzzy Inference Systems (FIS) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to predict the type of crime that is highly likely to occur at a certain place and time.Comment: Accepted Version, 2018 IEEE International Conference on Intelligent Systems (IS) September 25-27, Funchal - Madeira, Portuga 
700 1 |a Roy, Kalyan  |e VerfasserIn  |4 aut 
700 1 |a Rahman, M. Rashedur  |e VerfasserIn  |4 aut 
700 1 |a Mahmood, Saif  |e VerfasserIn  |4 aut 
700 1 |a Karim, Redwanul  |e VerfasserIn  |4 aut 
700 1 |a Islam, Mashnoon  |e VerfasserIn  |4 aut 
856 |u https://arxiv.org/pdf/2011.05805  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h repository [oa repository (via OAI-PMH doi match)] 
856 4 0 |u http://arxiv.org/abs/2011.05805  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://doi.org/10.1109/is.2018.8710564  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4392989003 
LOK |0 003 DE-627 
LOK |0 004 1866343270 
LOK |0 005 20231019043726 
LOK |0 008 231019||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE107758883 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw