Cross-classified multilevel models

Cross-classified multilevel modelling is an extension of standard multilevel modelling for non-hierarchical data that have cross-classified structures. Traditional multilevel models involve hierarchical data structures whereby lower level units such as students are nested within higher level units s...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Leckie, George (Autor)
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2019
En:Año: 2019
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866340964
003 DE-627
005 20250114054914.0
007 cr uuu---uuuuu
008 231019s2019 xx |||||o 00| ||eng c
035 |a (DE-627)1866340964 
035 |a (DE-599)KXP1866340964 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Leckie, George  |e VerfasserIn  |4 aut 
109 |a Leckie, George 
245 1 0 |a Cross-classified multilevel models 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Cross-classified multilevel modelling is an extension of standard multilevel modelling for non-hierarchical data that have cross-classified structures. Traditional multilevel models involve hierarchical data structures whereby lower level units such as students are nested within higher level units such as schools and where these higher level units may in turn be nested within further groupings or clusters such as school districts, regions, and countries. With hierarchical data structures, there is an exact nesting of each lower level unit in one and only one higher level unit. For example, each student attends one school, each school is located within one school district, and so on. However, social reality is more complicated than this, and so social and behavioural data often do not follow pure or strict hierarchies. Two types of non-hierarchical data structures which often appear in practice are cross-classified and multiple membership structures. In this article, we describe cross-classified data structures and cross-classified hierarchical linear modelling which can be used to analyse them 
856 4 0 |u http://arxiv.org/abs/1907.02569  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4392986691 
LOK |0 003 DE-627 
LOK |0 004 1866340964 
LOK |0 005 20231019043722 
LOK |0 008 231019||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE89552167 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw