Comparing conventional and machine-learning approaches to risk assessment in domestic abuse cases

We compare predictions from a conventional protocol-based approach to risk assessment with those based on a machine-learning approach. We first show that the conventional predictions are less accurate than, and have similar rates of negative prediction error as, a simple Bayes classifier that makes...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Grogger, Jeff 1959- (VerfasserIn)
Beteiligte: Kirchmaier, Thomas ; Ivandic, Ria
Medienart: Elektronisch Buch
Sprache:Englisch
Veröffentlicht: 2020
In:Jahr: 2020
Online-Zugang: Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866332538
003 DE-627
005 20250115003219.0
007 cr uuu---uuuuu
008 231019s2020 xx |||||o 00| ||eng c
035 |a (DE-627)1866332538 
035 |a (DE-599)KXP1866332538 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |8 1\p  |a Grogger, Jeff  |d 1959-  |e VerfasserIn  |0 (DE-588)124736661  |0 (DE-627)365708690  |0 (DE-576)294474412  |4 aut 
109 |a Grogger, Jeff 1959-  |a Grogger, Jeffrey 1959-  |a Grogger, Jeffrey Thomas 1959-  |a Grogger, Jeffrey T. 1959- 
245 1 0 |a Comparing conventional and machine-learning approaches to risk assessment in domestic abuse cases 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We compare predictions from a conventional protocol-based approach to risk assessment with those based on a machine-learning approach. We first show that the conventional predictions are less accurate than, and have similar rates of negative prediction error as, a simple Bayes classifier that makes use only of the base failure rate. A random forest based on the underlying risk assessment questionnaire does better under the assumption that negative prediction errors are more costly than positive prediction errors. A random forest based on two-year criminal histories does better still. Indeed, adding the protocol-based features to the criminal histories adds almost nothing to the predictive adequacy of the model. We suggest using the predictions based on criminal histories to prioritize incoming calls for service, and devising a more sensitive instrument to distinguish true from false positives that result from this initial screening 
700 1 |a Kirchmaier, Thomas  |e VerfasserIn  |4 aut 
700 1 |8 2\p  |a Ivandic, Ria  |e VerfasserIn  |0 (DE-588)118824440X  |0 (DE-627)166718394X  |4 aut 
856 4 0 |u https://core.ac.uk/download/305113201.pdf  |x Verlag  |z kostenfrei  |3 Volltext 
883 |8 1  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4392978265 
LOK |0 003 DE-627 
LOK |0 004 1866332538 
LOK |0 005 20231019043707 
LOK |0 008 231019||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE18713765 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw