A Rule-Based Model for Victim Prediction

In this paper, we proposed a novel automated model, called Vulnerability Index for Population at Risk (VIPAR) scores, to identify rare populations for their future shooting victimizations. Likewise, the focused deterrence approach identifies vulnerable individuals and offers certain types of treatme...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Elsayed, Nelly (Autor)
Otros Autores: Varlioglu, Said ; Ozer, Murat ; Li, Chengcheng
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2020
En:Año: 2020
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866329138
003 DE-627
005 20250113054907.0
007 cr uuu---uuuuu
008 231019s2020 xx |||||o 00| ||eng c
035 |a (DE-627)1866329138 
035 |a (DE-599)KXP1866329138 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Elsayed, Nelly  |e VerfasserIn  |4 aut 
245 1 2 |a A Rule-Based Model for Victim Prediction 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a In this paper, we proposed a novel automated model, called Vulnerability Index for Population at Risk (VIPAR) scores, to identify rare populations for their future shooting victimizations. Likewise, the focused deterrence approach identifies vulnerable individuals and offers certain types of treatments (e.g., outreach services) to prevent violence in communities. The proposed rule-based engine model is the first AI-based model for victim prediction. This paper aims to compare the list of focused deterrence strategy with the VIPAR score list regarding their predictive power for the future shooting victimizations. Drawing on the criminological studies, the model uses age, past criminal history, and peer influence as the main predictors of future violence. Social network analysis is employed to measure the influence of peers on the outcome variable. The model also uses logistic regression analysis to verify the variable selections. Our empirical results show that VIPAR scores predict 25.8% of future shooting victims and 32.2% of future shooting suspects, whereas focused deterrence list predicts 13% of future shooting victims and 9.4% of future shooting suspects. The model outperforms the intelligence list of focused deterrence policies in predicting the future fatal and non-fatal shootings. Furthermore, we discuss the concerns about the presumption of innocence right 
700 1 |a Varlioglu, Said  |e VerfasserIn  |4 aut 
700 1 |a Ozer, Murat  |e VerfasserIn  |4 aut 
700 1 |a Li, Chengcheng  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/2001.01391  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4392974863 
LOK |0 003 DE-627 
LOK |0 004 1866329138 
LOK |0 005 20231019043703 
LOK |0 008 231019||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE89600046 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw