A Statistical Approach to Crime Linkage

The object of this paper is to develop a statistical approach to criminal linkage analysis that discovers and groups crime events that share a common offender and prioritizes suspects for further investigation. Bayes factors are used to describe the strength of evidence that two crimes are linked. U...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Porter, Michael D. (Autor)
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2014
En:Año: 2014
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000cam a22000002c 4500
001 1866324179
003 DE-627
005 20250121054904.0
007 cr uuu---uuuuu
008 231019s2014 xx |||||o 00| ||eng c
035 |a (DE-627)1866324179 
035 |a (DE-599)KXP1866324179 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Porter, Michael D.  |e VerfasserIn  |4 aut 
245 1 2 |a A Statistical Approach to Crime Linkage 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The object of this paper is to develop a statistical approach to criminal linkage analysis that discovers and groups crime events that share a common offender and prioritizes suspects for further investigation. Bayes factors are used to describe the strength of evidence that two crimes are linked. Using concepts from agglomerative hierarchical clustering, the Bayes factors for crime pairs are combined to provide similarity measures for comparing two crime series. This facilitates crime series clustering, crime series identification, and suspect prioritization. The ability of our models to make correct linkages and predictions is demonstrated under a variety of real-world scenarios with a large number of solved and unsolved breaking and entering crimes. For example, a na\"ive Bayes model for pairwise case linkage can identify 82\% of actual linkages with a 5\% false positive rate. For crime series identification, 77\%-89\% of the additional crimes in a crime series can be identified from a ranked list of 50 incidents 
650 4 |a slides 
856 4 0 |u http://arxiv.org/abs/1410.2285  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4392969908 
LOK |0 003 DE-627 
LOK |0 004 1866324179 
LOK |0 005 20231019043655 
LOK |0 008 231019||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE17229892 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw