Leveraging Mobility Flows from Location Technology Platforms to Test Crime Pattern Theory in Large Cities

Crime has been previously explained by social characteristics of the residential population and, as stipulated by crime pattern theory, might also be linked to human movements of non-residential visitors. Yet a full empirical validation of the latter is lacking. The prime reason is that prior studie...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Feuerriegel, Stefan (VerfasserIn)
Beteiligte: Noulas, Anastasios ; Mascolo, Cecilia ; Kadar, Cristina
Medienart: Elektronisch Buch
Sprache:Englisch
Veröffentlicht: 2020
In:Jahr: 2020
Online-Zugang: Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866313509
003 DE-627
005 20250113054904.0
007 cr uuu---uuuuu
008 231019s2020 xx |||||o 00| ||eng c
035 |a (DE-627)1866313509 
035 |a (DE-599)KXP1866313509 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Feuerriegel, Stefan  |e VerfasserIn  |4 aut 
245 1 0 |a Leveraging Mobility Flows from Location Technology Platforms to Test Crime Pattern Theory in Large Cities 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Crime has been previously explained by social characteristics of the residential population and, as stipulated by crime pattern theory, might also be linked to human movements of non-residential visitors. Yet a full empirical validation of the latter is lacking. The prime reason is that prior studies are limited to aggregated statistics of human visitors rather than mobility flows and, because of that, neglect the temporal dynamics of individual human movements. As a remedy, we provide the first work which studies the ability of granular human mobility in describing and predicting crime concentrations at an hourly scale. For this purpose, we propose the use of data from location technology platforms. This type of data allows us to trace individual transitions and, therefore, we succeed in distinguishing different mobility flows that (i) are incoming or outgoing from a neighborhood, (ii) remain within it, or (iii) refer to transitions where people only pass through the neighborhood. Our evaluation infers mobility flows by leveraging an anonymized dataset from Foursquare that includes almost 14.8 million consecutive check-ins in three major U.S. cities. According to our empirical results, mobility flows are significantly and positively linked to crime. These findings advance our theoretical understanding, as they provide confirmatory evidence for crime pattern theory. Furthermore, our novel use of digital location services data proves to be an effective tool for crime forecasting. It also offers unprecedented granularity when studying the connection between human mobility and crime 
700 1 |a Noulas, Anastasios  |e VerfasserIn  |4 aut 
700 1 |a Mascolo, Cecilia  |e VerfasserIn  |4 aut 
700 1 |a Kadar, Cristina  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/2004.08263  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4392957144 
LOK |0 003 DE-627 
LOK |0 004 1866313509 
LOK |0 005 20231019043638 
LOK |0 008 231019||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE89626019 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw