Visualization, Feature Selection, Machine Learning: Identifying the Responsible Group for Extreme Acts of Violence

The toll of human casualties and psychological impacts on societies make any study on violent extremism worthwhile, let alone attempting to detect patterns among them. This paper is an effort to predict which violent extremist organization (VEO), among 14 currently active ones throughout the world,...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Hall, Margeret A. (Autor)
Otros Autores: Hashemi, Mahdi
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2018
En:Año: 2018
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866312219
003 DE-627
005 20250114054910.0
007 cr uuu---uuuuu
008 231019s2018 xx |||||o 00| ||eng c
035 |a (DE-627)1866312219 
035 |a (DE-599)KXP1866312219 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Hall, Margeret A.  |e VerfasserIn  |4 aut 
245 1 0 |a Visualization, Feature Selection, Machine Learning: Identifying the Responsible Group for Extreme Acts of Violence 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The toll of human casualties and psychological impacts on societies make any study on violent extremism worthwhile, let alone attempting to detect patterns among them. This paper is an effort to predict which violent extremist organization (VEO), among 14 currently active ones throughout the world, is responsible for a violent act based on 14 features, including its human and structural tolls, its target type and value, intelligence, and weapons utilized in the attack. Three main steps in our paper include: 1) the visualization of the violent acts through linear and non-linear dimensionality reduction techniques; 2) sequential forward feature selection based on the generalization accuracy of three machine learning models–decision tree, and linear and nonlinear SVM; and 3) employing multilayer perceptron to predict the VEO based on the selected features of a violent act. Top-ranked selected features were related to the target type and plan and the multilayer perceptron achieved up to 40% test accuracy 
700 1 |a Hashemi, Mahdi  |e VerfasserIn  |4 aut 
856 4 0 |u https://core.ac.uk/download/232775455.pdf  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4392955850 
LOK |0 003 DE-627 
LOK |0 004 1866312219 
LOK |0 005 20231019043636 
LOK |0 008 231019||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE69570320 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw