Estimation of Causal Effects with Multiple Treatments: A Review and New Ideas

The propensity score is a common tool for estimating the causal effect of a binary treatment in observational data. In this setting, matching, subclassification, imputation, or inverse probability weighting on the propensity score can reduce the initial covariate bias between the treatment and contr...

Full description

Saved in:  
Bibliographic Details
Main Author: Gutman, Roee (Author)
Contributors: Lopez, Michael J.
Format: Electronic Book
Language:English
Published: 2017
In:Year: 2017
Online Access: Volltext (kostenfrei)
Volltext (kostenfrei)
Check availability: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866307657
003 DE-627
005 20250115054909.0
007 cr uuu---uuuuu
008 231019s2017 xx |||||o 00| ||eng c
024 7 |a 10.1214/17-sts612  |2 doi 
035 |a (DE-627)1866307657 
035 |a (DE-599)KXP1866307657 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Gutman, Roee  |e VerfasserIn  |4 aut 
245 1 0 |a Estimation of Causal Effects with Multiple Treatments: A Review and New Ideas 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The propensity score is a common tool for estimating the causal effect of a binary treatment in observational data. In this setting, matching, subclassification, imputation, or inverse probability weighting on the propensity score can reduce the initial covariate bias between the treatment and control groups. With more than two treatment options, however, estimation of causal effects requires additional assumptions and techniques, the implementations of which have varied across disciplines. This paper reviews current methods, and it identifies and contrasts the treatment effects that each one estimates. Additionally, we propose possible matching techniques for use with multiple, nominal categorical treatments, and use simulations to show how such algorithms can yield improved covariate similarity between those in the matched sets, relative the pre-matched cohort. To sum, this manuscript provides a synopsis of how to notate and use causal methods for categorical treatments 
700 1 |a Lopez, Michael J.  |e VerfasserIn  |4 aut 
856 4 0 |u https://core.ac.uk/download/235416525.pdf  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://doi.org/10.1214/17-sts612  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4392951197 
LOK |0 003 DE-627 
LOK |0 004 1866307657 
LOK |0 005 20231019043630 
LOK |0 008 231019||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE37723437 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw