Filaments of crime: Informing policing via thresholded ridge estimation

Objectives: We introduce a new method for reducing crime in hot spots and across cities through ridge estimation. In doing so, our goal is to explore the application of density ridges to hot spots and patrol optimization, and to contribute to the policing literature in police patrolling and crime re...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Argueta Jr., Jaime R. (Autor)
Otros Autores: Moews, Ben ; Gieschen, Antonia
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2019
En:Año: 2019
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866152580
003 DE-627
005 20250114054907.0
007 cr uuu---uuuuu
008 231018s2019 xx |||||o 00| ||eng c
035 |a (DE-627)1866152580 
035 |a (DE-599)KXP1866152580 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Argueta Jr., Jaime R.  |e VerfasserIn  |4 aut 
245 1 0 |a Filaments of crime: Informing policing via thresholded ridge estimation 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Objectives: We introduce a new method for reducing crime in hot spots and across cities through ridge estimation. In doing so, our goal is to explore the application of density ridges to hot spots and patrol optimization, and to contribute to the policing literature in police patrolling and crime reduction strategies. Methods: We make use of the subspace-constrained mean shift algorithm, a recently introduced approach for ridge estimation further developed in cosmology, which we modify and extend for geospatial datasets and hot spot analysis. Our experiments extract density ridges of Part I crime incidents from the City of Chicago during the year 2018 and early 2019 to demonstrate the application to current data. Results: Our results demonstrate nonlinear mode-following ridges in agreement with broader kernel density estimates. Using early 2019 incidents with predictive ridges extracted from 2018 data, we create multi-run confidence intervals and show that our patrol templates cover around 94% of incidents for 0.1-mile envelopes around ridges, quickly rising to near-complete coverage. We also develop and provide researchers, as well as practitioners, with a user-friendly and open-source software for fast geospatial density ridge estimation. Conclusions: We show that ridges following crime report densities can be used to enhance patrolling capabilities. Our empirical tests show the stability of ridges based on past data, offering an accessible way of identifying routes within hot spots instead of patrolling epicenters. We suggest further research into the application and efficacy of density ridges for patrolling.Comment: 17 pages, 3 figure 
700 1 |a Moews, Ben  |e VerfasserIn  |4 aut 
700 1 |a Gieschen, Antonia  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/1907.03206  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4391833344 
LOK |0 003 DE-627 
LOK |0 004 1866152580 
LOK |0 005 20231018043719 
LOK |0 008 231018||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE89551390 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw