Exploring Spatio-Temporal and Cross-Type Correlations for Crime Prediction

Crime prediction plays an impactful role in enhancing public security and sustainable development of urban. With recent advances in data collection and integration technologies, a large amount of urban data with rich crime-related information and fine-grained spatio-temporal logs has been recorded....

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Tang, Jiliang (VerfasserIn)
Beteiligte: Zhao, Xiangyu
Medienart: Elektronisch Buch
Sprache:Englisch
Veröffentlicht: 2020
In:Jahr: 2020
Online-Zugang: Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866145029
003 DE-627
005 20250113054902.0
007 cr uuu---uuuuu
008 231018s2020 xx |||||o 00| ||eng c
035 |a (DE-627)1866145029 
035 |a (DE-599)KXP1866145029 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Tang, Jiliang  |e VerfasserIn  |4 aut 
245 1 0 |a Exploring Spatio-Temporal and Cross-Type Correlations for Crime Prediction 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Crime prediction plays an impactful role in enhancing public security and sustainable development of urban. With recent advances in data collection and integration technologies, a large amount of urban data with rich crime-related information and fine-grained spatio-temporal logs has been recorded. Such helpful information can boost our understandings about the temporal evolution and spatial factors of urban crimes and can enhance accurate crime prediction. In this paper, we perform crime prediction exploiting the cross-type and spatio-temporal correlations of urban crimes. In particular, we verify the existence of correlations among different types of crime from temporal and spatial perspectives, and propose a coherent framework to mathematically model these correlations for crime prediction. The extensive experimental results on real-world data validate the effectiveness of the proposed framework. Further experiments have been conducted to understand the importance of different correlations in crime prediction 
700 1 |a Zhao, Xiangyu  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/2001.06923  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4391825783 
LOK |0 003 DE-627 
LOK |0 004 1866145029 
LOK |0 005 20231018043708 
LOK |0 008 231018||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE89604139 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw