Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term

We consider the system \[ \left\{ \begin{aligned} u_t &= \Delta u - \chi \nabla \cdot ( \tfrac{u}{v} \nabla v) - uv + \rho u - \mu u^2, \\ v_t &= \Delta v - v + u v \end{aligned} \right. \tag{$\star$} \] with $\rho \in \mathbb{R}, \mu > 0, \chi > 0$ in a bounded domain $\Omega \subsete...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Heihoff, Frederic (VerfasserIn)
Medienart: Elektronisch Buch
Sprache:Englisch
Veröffentlicht: 2019
In:Jahr: 2019
Online-Zugang: Volltext (kostenfrei)
Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866138537
003 DE-627
005 20250114054905.0
007 cr uuu---uuuuu
008 231018s2019 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00033-020-01304-w  |2 doi 
035 |a (DE-627)1866138537 
035 |a (DE-599)KXP1866138537 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Heihoff, Frederic  |e VerfasserIn  |4 aut 
245 1 0 |a Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We consider the system \[ \left\{ \begin{aligned} u_t &= \Delta u - \chi \nabla \cdot ( \tfrac{u}{v} \nabla v) - uv + \rho u - \mu u^2, \\ v_t &= \Delta v - v + u v \end{aligned} \right. \tag{$\star$} \] with $\rho \in \mathbb{R}, \mu > 0, \chi > 0$ in a bounded domain $\Omega \subseteq \mathbb{R}^2$ with smooth boundary. While very similar to chemotaxis models from biology, this system is in fact inspired by recent modeling approaches in criminology to analyze the formation of crime hot spots in cities. The key addition here in comparison to similar models is the logistic source term. The central complication this system then presents us with, apart from us allowing for arbitrary $\chi > 0$, is the nonlinear growth term $uv$ in the second equation as it makes obtaining a priori information for $v$ rather difficult. Fortunately, it is somewhat tempered by its negative counterpart and the logistic source term in the first equation. It is this interplay that still gives us enough access to a priori information to achieve the main result of this paper, namely the construction of certain generalized solutions to ($\star$). To illustrate how close the interaction of the $uv$ term in the second equation and the $-\mu u^2$ term in the first equation is to granting us classical global solvability, we further give a short argument showing that strengthening the $-\mu u^2$ term to $-\mu u^{2+\gamma}$ with $\gamma > 0$ in the first equation directly leads to global classical solutions 
856 |u https://link.springer.com/content/pdf/10.1007/s00033-020-01304-w.pdf  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h publisher [open (via crossref license)] 
856 4 0 |u http://arxiv.org/abs/1911.04838  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://doi.org/10.1007/s00033-020-01304-w  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4391819295 
LOK |0 003 DE-627 
LOK |0 004 1866138537 
LOK |0 005 20231018043657 
LOK |0 008 231018||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE85464401 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw