Does Terrorism Trigger Online Hate Speech? On the Association of Events and Time Series

Hate speech is ubiquitous on the Web. Recently, the offline causes that contribute to online hate speech have received increasing attention. A recurring question is whether the occurrence of extreme events offline systematically triggers bursts of hate speech online, indicated by peaks in the volume...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Müller, Emmanuel (VerfasserIn)
Beteiligte: Scharwächter, Erik
Medienart: Elektronisch Buch
Sprache:Englisch
Veröffentlicht: 2020
In:Jahr: 2020
Online-Zugang: Volltext (kostenfrei)
Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:

MARC

LEADER 00000cam a22000002c 4500
001 1866134930
003 DE-627
005 20250113054900.0
007 cr uuu---uuuuu
008 231018s2020 xx |||||o 00| ||eng c
024 7 |a 10.1214/20-aoas1338  |2 doi 
035 |a (DE-627)1866134930 
035 |a (DE-599)KXP1866134930 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Müller, Emmanuel  |e VerfasserIn  |4 aut 
245 1 0 |a Does Terrorism Trigger Online Hate Speech? On the Association of Events and Time Series 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Hate speech is ubiquitous on the Web. Recently, the offline causes that contribute to online hate speech have received increasing attention. A recurring question is whether the occurrence of extreme events offline systematically triggers bursts of hate speech online, indicated by peaks in the volume of hateful social media posts. Formally, this question translates into measuring the association between a sparse event series and a time series. We propose a novel statistical methodology to measure, test and visualize the systematic association between rare events and peaks in a time series. In contrast to previous methods for causal inference or independence tests on time series, our approach focuses only on the timing of events and peaks, and no other distributional characteristics. We follow the framework of event coincidence analysis (ECA) that was originally developed to correlate point processes. We formulate a discrete-time variant of ECA and derive all required distributions to enable analyses of peaks in time series, with a special focus on serial dependencies and peaks over multiple thresholds. The analysis gives rise to a novel visualization of the association via quantile-trigger rate plots. We demonstrate the utility of our approach by analyzing whether Islamist terrorist attacks in Western Europe and North America systematically trigger bursts of hate speech and counter-hate speech on Twitter.Comment: 19 pages, 8 figures, to appear in the Annals of Applied Statistics, source code available at https://github.com/diozaka/pEC 
650 4 |a Research 
700 1 |a Scharwächter, Erik  |e VerfasserIn  |4 aut 
856 |u https://projecteuclid.org/journals/annals-of-applied-statistics/volume-14/issue-3/Does-terrorism-trigger-online-hate-speech-On-the-association-of/10.1214/20-AOAS1338.pdf  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h publisher [open (via free pdf)] 
856 4 0 |u http://arxiv.org/abs/2004.14733  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://doi.org/10.1214/20-aoas1338  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4391815699 
LOK |0 003 DE-627 
LOK |0 004 1866134930 
LOK |0 005 20231018043652 
LOK |0 008 231018||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE85600798 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw